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Abstract

Panel data models with factor structures or interactive fixed effects have been
researched for decades. In this paper, we proposed the two-way Mundlak-type
projection estimator for such models, allowing for linear or interactive relation-
ships between the factor structures and the regressors. We further consider the
endogenous case, by combining the Mundlak-type estimation with the control
function approach to simultaneously control all the correlations between the re-
gressors and the composite errors. All of our estimation procedures do not require
iteration. For inference, we apply the dependent wild bootstrap to obtain consis-
tent covariance estimators and bootstrapped test statistics. In addition, we ex-
tend the robust inference method under the fixed-b asymptotics to the interactive
panel data models. The asymptotic distributions of the proposed estimators are
derived as long as one dimension of panels tends to infinity, and Monte Carlo sim-
ulations are conducted to verify the theoretical results in finite samples. Finally,
we apply our proposed methods to the estimation of the aggregate production
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1 Introduction

Panel data models have become popular in economics and other fields for long peri-

ods. An important superiority of panel data models is that the parameters of interest

can be consistently estimated while controlling unobservable cross-sectional or time

heterogeneity. For decades, many empirical researchers have used factor structures to

capture the unobservable heterogeneity in panel data, which are called panel models

with the interactive effects or the factor augmented panels in the literature. In par-

ticular, the unobserved time-varying factors in such models have heterogeneous impact

across individuals, while causing cross-sectional dependence in the composite errors.

Since both individual specific effects and time-varying effects in the factor structures

are unobservable, they can be treated as either fixed parameters or random variables.

Hsiao (2018) summarized four formulations of the models and distinguishes differences

in various assumptions:

(i) When both individual effects and time effects are treated as random (Sarafidis

and Robertson, 2009), it is reasonable to treat them as a component of errors. The

correlations between regressors and factor structures lead to inconsistent estimator by

ordinary least squared while the instrumental variable estimation works.

(ii) If both are treated as fixed parameters, the common factors can be treated as

additional regressors (Pesaran, 2006; Bai, 2009; Moon and Weidner, 2015). Thus, there

is no need to discuss the specific correlation between regressors and factor structure.

(iii) In the case of random individual effects with fixed time effects (Sarafidis and

Wansbeek, 2012; Bai 2013; Robertson and Sarafidis, 2015), which corresponds to the

case with a large number of individuals and a fixed time span, the correlations between

the regressors and common factors can be controlled by treating the common factors

as fixed constants, and the quasi maximum likelihood estimations work if the random

individual effects is not correlated with the regressors.

(iv) In the case of random time effects with fixed individual effects (Hsiao, 2018),

it is reasonable to treat the factor loadings as fixed and assume that the regressors is

uncorrelated with the common factors, controlling the correlations between the regressor

and factor structures.

The above arguments show that the key point of estimation lies in how to deal with

the factor structures when correlation between regressors and factor structure exists.

Estimation methods can be classified accordingly. The most direct method is to esti-

mate the interactive effects under case (ii), where the factor structure is regarded as
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fixed parameters. Bai (2009) proposed the iterative fixed effects (IFE) estimator under

large panels and show the theoretical guarantee. Jiang et al. (2021) show convergence

issues of the recursive estimation procedure of the IFE. In addition, Moon and Weidner

(2015) show that the estimator of Bai (2009) can be interpreted as a quasi maximum

likelihood estimator (QMLE), the consistency of which is maintained even when the

number of factors is not specified correctly, as long as it is larger than or equal to the

true number of factors. Moon and Weidner (2017) proposed a bias-corrected QMLE

estimator for dynamic panel data models with homogeneous slopes, while Moon and

Weidner (2019) used a nuclear norm regularization to obtain computational advan-

tage. Furthermore, Bai and Li (2014) proposed maximum likelihood estimation for the

models.

Another branch of literature proposed estimation methods that eliminate the in-

teractive effects directly. Holtz-Eakin et al. (1988) suggested eliminating the unob-

served factor component using the quasi-differencing transformation. Ahn, Lee and

Schmidt (2013) proposed the generalized method of moments (GMM) method. The

GMM method is based on a nonlinear transformation known as quasi-differencing that

eliminates the interactive effects. Estimating the common factors and then removing

the interactive effects is a compromise. Pesaran (2006) proposed the common corre-

lated estimator (CCE), which only allows the correlation between the common factors ft

and regressors. The CCE estimator uses the cross-sectional averages of both regressors

and dependent variables as proxies for the unobservable common factors. In addition,

Hsiao, Shi and Zhou (2021) proposed to find the null space of the factors or the loadings

and constructed the transformed estimators (TE) to get rid of the interactive effects.

Morkutė,Sarafidis, Yamagata and Cui (2021) projected out the common factors from

the exogenous covariates of the model under case (i). Juodis and Sarafidis (2022) con-

sidered the case where regressors are allowed to be correlated with the factors and its

loadings under the fixed T setup and proposed two methods to construct the factor

proxies by observed variables.

Last strategy aims to control the correlation between the regressors and interac-

tive effects. Then, IV or GMM-type estimation methods are applied. Ahn, Lee and

Schmidt (2001) proposed a GMM estimator to remove the correlation under case (iii).

Sarafidis and Robertson (2009) and Robertson and Sarafidis (2015) proposed IV or

GMM-based method by regarding the loadings and factors as random variables and

assuming there exist instruments that are both correlated with the regressors and un-

correlated with the composite error terms. Bai (2024) proposed a MLE of with the
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Mundlak or Chamberlain-type projection in order to control the correlation between

the regressors and loadings. Similarly, Hayakawa (2013) provided a GMM estimator

based on the Mundlak-Chamberlain type projection. Juodis and Sarafidis (2018) gave

a summary of the existing literature on the dynamic panel data estimators with multi-

factor errors and proposed a more general projection specification form.

The above approaches can be adapted to various specifications. Westerlund (2019),

Westerlund and Urbain (2015) compare the properties of CCE estimator, and IFE esti-

mator. Under certain assumptions, the relative properties of these two approaches are

different and no general conclusion is drawn regarding which one is dominant. Simi-

lar study regarding multi-factor error structure includes Phillips and Sul (2003), who

proposed a seemingly unrelated median unbiased estimator to estimate autoregressive

model with cross-sectional dependence and heterogeneous coefficients. Kneip, Sickles,

and Song (2012) estimated the unobservable common effects by smooth spline based on

the assumption that the unobservable common effects are a smooth function of time.

In this paper, we aim to extend the one-way Mundlak projection approach for the

panel data models with the interactive effects as noted or used in Bai (2009) and Bai

(2024), which only allowed for the linear correlation between the loadings and regressors.

In addition, Keilbara et al. (2023) projected the loadings onto the regressors by a non-

parametric form. Different from these papers, we regard both individuals effects and

time effects as random variables and allow the linear or interactive correlations between

the regressors and the factor structures by proposing a two-way Mundlak projection

method for the panel model with interactive effects. Our paper is also different from

the two-way Mundlak projection estimator in Wooldridge (2021), which focused on

the two-way fixed effects panel data model and estimated the interaction of time fixed

effects and individual fixed effect by using directly the interactions of the cross-sectional

and time averages of the regressors. While both factor loadings and common factors

are correlated with the regressors in a non-parametric way, they can be transformed

into a interactive form (Freeman and Weidner, 2023). Thus, our two-way Mundlak

projection method is more general. Secondly, our method does not require the iteration

step to estimate the factors or loadings, which may cause the asymptotic bias or require

additional rank conditions. In the case of linear correlation between the regressors and

factor structures, our approach can be regarded as an extension of the CCE approach.

For case of interactive correlation, it can be regarded as a combination of the CCE and

IFE approaches. Thirdly, our estimator, named the Mundlak least squared estimator

(MLS), is consistent and asymptotic normal under N and/or T tending to infinity.
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Last, we consider statistical inference for the proposed estimator under our framework,

in which a dependent wild bootstrap procedure (Gao, Peng and Yan, 2023) and a

fixed-b type robust inference procedure (Vogelsang, 2012) are proposed.

Furthermore, in the paper we consider another source of endogeneity, originating

from the correlation between the regressors and the errors, which has received much

attention recently. For example, Robertson and Sarafidis (2015) proposed a new in-

strumental variables approach for consistent and asymptotically efficient estimation of

panel data models with weakly exogenous or endogenous regressors under a multi-factor

error structure. Hong, Su and Jiang (2023) proposed a profile GMM estimation method

for panel data models with interactive fixed effects. Juodis and Sarafidis (2022) put

forward a novel method-of-moments approach for estimation of factor-augmented panel

data models with endogenous regressors and fixed T . Morkutė et al. (2021) projected

out the common factors from the exogenous covariates of the model, and constructed

instruments based on defactored covariates. Hsiao, Zhou, Kong (2023) extended the

transformed estimation approach to the endogenous case.

The rest of the paper is organized as follows. Section 2 introduces the models, the

Mundlak-type projection estimators in the case with linear correlation, and the asymp-

totic distribution of the estimators. In Section 3, we study the Munlak-type projection

in the general case with a interactive correlation between the regressors and the factor

structures. In Section 4, we further extend the Mundlak-type projection estimator to

the endogenous case. For inference, we propose the dependent wild bootstrap proce-

dure and the robust inference procedure in Sections 5 and 6, respectively. Section 7

gives the design of Monte Carlo simulations, while the empirical application is shown

in Section 8. We conclude this study in Section 9. The simulation results are shown

in Appendix A and mathematical proofs are provided in the Appendix B. Additional

simulation results are shown in Appendix C (not for publications).

2 Model and the Mundlak Estimators

2.1 Background and Motivation

The dependent variable yit, observed on i-th individual at time t, for i = {1, 2, ..., N}
and t = {1, 2, ..., T}, is generated by

yit = β0 + x′
itβ + eit, (1)
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where β0 is an intercept, xit = (xit,1, · · · , xit,p)
′ is a p×1 vector of explanatory variables,

with a p×1 vector of slopes β. The errors eit are cross-sectional correlated with a multi-

factor structure, i.e.,

eit = λ′
ift + εit, (2)

where ft is a r × 1 vector of unobservable common factors with r × 1 vector of factor

loadings λi, and εit is the idiosyncratic error. We assume that the dimension r is fixed.

Although the common factors ft and factor loadings λi are strictly exogenous with

respect to the idiosyncratic errors εit under standard assumptions, the regressors xit

could be correlated with eit, due to the correlation between xit and ft, λi, εit, resulting

in the inconsistency of the OLS estimator β̂OLS:

β̂OLS − β = (
∑N

i=1

∑T
t=1xitx

′
it)

−1(
∑N

i=1

∑T
t=1xitλ

′
ift +

∑N
i=1

∑T
t=1xitεit).

Specifically, there may exist two sources of endogeneity that result in the correlations

between the regressors xit and the factor structure λ′
ift in the errors. In this paper, we

propose Mundlak projection approaches and control function approaches to deal with

those correlations.

For time t, let x·t = (1, 1
N

∑N
i=1 xit,1, · · · , 1

N

∑N
i=1 xit,p)

′ denote the cross-sectional av-

erage of the regressors. First, suppose that the factor loadings λi are uncorrelated with

xit. Then, to control for the correlation between xit and ft, we may simply project the

common factor ft onto the space of the cross-sectional average x·t, following Mundlak’s

approach (Mundlak, 1978), i.e., we let

ft
r×1

= B
r×(p+1)

x·t
(p+1)×1

+ ξt, (3)

where B is the coefficient matrix and ξt is the random projection error. In order to

display the spirit of our Mundlak projection approach, equation (3) restricts the linear

correlation between ft and x·t.

Remark 1: We note that in Pesaran (2006)’s model with common corre-

lated effects xit = Γ′
ift + vit, where Γi is not correlated with λi, the common

factor ft is assumed to be fully determined by the cross-sectional average

of regressor x·t (i.e., the variance of vit is assumed to converge to zero), as

N → ∞. By contrast, in equation (3), the common factor ft can still be

affected by the idiosyncratic error ξt even as N → ∞ (i.e., we allow for the

case where the variance of ξt is fixed). The difference between ft = Bx·t + ξt,

common factor ft has additional information ξt. In addition, xit = Γ′
ift + vit,
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xit includes all the information of ft. above equation , we allow for the factor

number r is ‘larger than the number of regressor p.

Plugging the equation (3) into factor structure (2), the model (1) becomes

yit = β0 + x′
itβ + λ′

iBx·t + uit, (4)

where uit = λ′
iξt + εit. Then, under the previous assumption that λi is uncorrelated

with xit, λ
′
iξt will be uncorrelated with x·t and xit. Therefore, the pooled OLS estimator

of β in (4) is consistent under standard regularity condition, by using the argument of

partitioned regression.

More specifically, for j = {1, · · · , p}, let x̄·t,j =
1
N

∑N
i=1 xit,j, and X̄·,j = (x̄·1,j, · · · , x̄·T,j)

′.

Stacking time t, the regression (4) can be written as the following vector form:

Yi = ιTβ0 +Xiβ + X̄B′λi + ui, (5)

where Yi
T×1

= (yi1, yi2..., yiT )
′, Xi

T×p
=(xi1,xi2...,xiT )

′, X̄
T×(p+1)

= (lT , X̄·,1, · · · , X̄·,p) with

lT
T×1

= (1, 1, · · · , 1)′, and ui
T×1

= (ui1, ui2, ..., uiT )
′. We pre-multiple the equation (5)

by MX̄ = IT − X̄(X̄ ′X̄)−1X̄ ′, and the model becomes

MX̄Yi = MX̄Xiβ +MX̄ui.

Then, the standard (one-way) Mundlak-type least squared estimator is defined as

β̂M1 = (
∑N

i=1X
′
iMX̄Xi)

−1(
∑N

i=1X
′
iMX̄Yi). (6)

However, if the factor loadings λi is in fact correlated with xit, the above one-way

Mundlak estimator β̂M1 is no longer consistent. In the following section, we propose

a two-way Mundlak projection estimation procedure to deal with such a more general

setting.

2.2 The Two-way Mundlak Projection in Linear Form (CLF)

To control for the correlation between xit and λi, we further project λi onto the space

of the time average of xit. Specifically, for each individual i, denote the time average of

regressors as xi· = (1, 1
T

∑T
t=1 xit,1, · · · , 1

T

∑T
t=1 xit,p)

′. Then, we have

λi
r×1

= A
r×(p+1)

xi·
(p+1)×1

+ ηi, (7)

where, A is a constant coefficient matrix and ηi is the projection error.
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Thus, our panel model now consists of equations (1), (2), (3), and (7). Plugging (3)

and (7) into the factor structure (2), we can re-write (1) as

yit = β0 + x′
itβ + x′

·tB
′ηi + x′

i·A
′ξt + x′

i·A
′Bx·t + η′iξt + εit

≡ β0 + x′
itβ + x′

·tρi + x′
i·δt + x′

i·A
′Bx·t + uit, (8)

where ρi
(p+1)×1

= B′ηi, δt
(p+1)×1

= A′ξt, and uit = η′iξt + εit.

Similar to the argument of partitioned regression in Section 2.1, we implement

the following steps to remove the nuisance parameters and obtain a direct estimation

procedure of the parameter of interest β. First, by stacking time t, we can re-write the

regression (8) as

Yi = β0 · lT +Xiβ + X̄ρi + δxi· + X̄B′Axi· + ui, (9)

where δ
T×(p+1)

= (δ1, δ2, ...δT )
′.

Second, we pre-multiply the equation (9) by MX̄ = IT − X̄(X̄ ′X̄)−1X̄ ′,

MX̄Yi = MX̄Xiβ +MX̄δxi· +MX̄ui.

Third, we stack individual i, and rewrite the above model as

MX̄Y = β1 ·MX̄X
1 + β2 ·MX̄X

2 + ....+ βp ·MX̄X
p +MX̄δX

′ +MX̄U,

where Y
T×N

= (Y1, Y2, ..., YN), Xj

T×N
is a T × N matrix being the jth regressor matrix

associated with the parameter βj, X
N×(p+1)

= (x1·, x2·, ..., xN ·)
′, U

T×N
= (u1, u2, ..., uN) =

ξη′ + ε.

Then, we post-multiply the equation by MX = IN −X(X ′X)−1X ′ and obtain

MX̄YMX = β1 ·MX̄X
1MX + ....+ βp ·MX̄X

pMX +MX̄UMX . (10)

Finally, we collect all the transformed regressors for individual i at period t, X̃
NT×p

=

[vec(MX̄X
1MX), · · · , vec(MX̄X

pMX)]. Similarly, let Ỹ
NT×1

= vec(MX̄YMX), and Ũ
NT×1

=

vec(MX̄UMX). Thus, equation (10) can be further parameterized by

Ỹ = X̃β + Ũ , (11)

and then our two-way Mundlak least squared estimator is defined as

β̂M2 = (X̃ ′X̃)−1X̃ ′Ỹ . (12)

8



Remark 2: Our approach is robust to the case with additional individual and time

fixed effects. On the other hand, the interactive fixed effect (IFE) estimator proposed

by Bai (2009) and other related approaches need additional treatment in this case. For

example, consider the interactive fixed effect model with two-way fixed effects:

yit = β0 + x′
itβ + λ′

ift + αi + ϕt + εit,

where αi is the individual fixed effect and ϕt is the time fixed effect. To deal with αi, we

can write down an additional projection similar to (7), i.e.,

αi = Ã
r×(p+1)

xi·
(p+1)×1

+ η̃i. (13)

Then, by adding (13) to the right hand side of (8), we obtain

yit = β0 + x′
itβ + x′

·tρi + x′
i·(δt + Ã) + x′

i·A
′Bx·t + (η̃i + uit). (14)

Thus, the two-way Mundlak estimator remains consistent in this case. The projection

for ϕt is similar.

2.3 Asymptotic Normality

In this section, we show the asymptotic properties of the two-way Mundlak type esti-

mator β̂M2. First, we give the following regularity conditions.

Assumption 1 A and B are finite and full row rank matrices.

Assumption 2 (i) E||x̃it||4 < ∞; (ii) the matrix (NT )−1X̃ ′X̃ converges to non-

singular matrix, as (T,N) → ∞.

Assumption 3 (i) uit is independent of x̃it; (ii) Given x̃it, let Ut = (u1t,··· ,uNt)
′,

and Ūt = 1√
N

∑N
i=1 uit, in which Ut follows a process Ut = g(θt, θt−1, · · · ) with θt =

(θ1t, · · · , θNt)
′ being a sequence of independent and identically distributed random vec-

tors, E(θt|x̃it) = 0N , and g(·) is a measurable function. In addition, let Ū⋆
t = 1√

N
U∗′
t 1N ,

where U⋆
t = g(θt, · · · , θ1, θ′0, θ′−1, · · · ) is the coupled version of Ut, and θ′t is an indepen-

dent copy of θt. Suppose that
∑∞

t=0 t
2δUt,κ < ∞, for κ ≥ 4, where δUt,κ = ||Ūt − Ū⋆

t ||κ.

Remark 3: (1) The full row rank matrix of A in Assumption 1 implies the factor

loadings λi have not overlap, such that the rank of matrix 1
N

∑N
i=1 λ

′
iλi equals r. Similar,

the full row rank matrix of B implies the 1
N

∑N
i=1 f

′
tft is full rank. If the matrices of
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A and B are not full column rank, it implies that the number of true factors

is smaller than r and our estimation also work. We allow for the factor

number is larger than the number of regressors; (2) Assumption 2 directly set

the identification condition on the transformed regressors x̃it, which is common in the

literature. (3) Since uit = η′iξt + εit, to show the estimated estimator is consistent, we

only need E(uit|x̃it) = 0, allowing for ξt,ηi and εit are mutual dependent. In Pesaran

(2006), the regressors are driven by common factors xit = Γ′
ift + vit, in which vit is

not correlated with εit. Thus, we relax it; (4) To obtain the asymptotic distribution

of the estimator, Assumption 3(i) sets strictly assumption that uit is independent of

x̃it, instead of E(uit|x̃it) = 0, which is necessary as Bai (2009) and Gao et al.(2023);

(6) Since uit = η′iξt + εit, for all (i, j) and (t, s), there exists heteroskedasticity across

each i and t, serial correlation for each i and sectional dependence among individuals

for each t. Assumption 3(ii) assume the generating process of composite error uit,

which is borrowed from Assumption 1 of Gao, Peng and Yan (2023). It’s more general

and allows for both cross-sectional dependence and serial correlation and conditional

heteroscedasticity in the composite error uit. As noted in Example 1.2 of Gao, Peng

and Yan (2023), Assumption 3 implies Assumption C of the errors in Bai (2009),

allowing for dependence in the both dimensions. Thus, according to Assumptions 2 and

3, and Theorem 2.1 in Gao, Peng and Yan (2023), let X
NT×p

= (MX ⊗MX̄)X̃, and the

(i− 1)T + t row of X is denoted by Xti
p×1

,

(NT )−1/2
∑N

i=1

∑T
t=1Xtiuit

d→ N(0,ΦNT ),

where ΦNT is p× p dimensional non-singular positive matrix.

Under the above assumptions, we obtain the following Theorem 1.

Theorem 1 Under Assumptions 1-3, as (T,N) → ∞, then

√
NT (β̂M2 − β)

d→ N(0, Vβ2).

where Vβ2 = Ψ−1
NTΦNTΨ

−1
NT with ΨNT = plim

(N,T )→∞

1
NT

X̃ ′X̃ and

ΦNT = plim
(T,N)→∞

1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

E(uitu
′
js)XtiX′

sj,

where uit = η′iξt + εit.
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Theorem 1 states the asymptotic distribution of β̂M2 as (T,N) → ∞. Based on

the discussions in Gao et al. (2023), the panel HAC estimation is consistent

estimator of Vβ2. Specifically, let ν̂it
p×1

= x̃it
ˆ̃uit with ˆ̃uit = ỹit − x̃′

itβ̂M2. Define

ˆ̄νt =
∑N

i=1 x̃it
ˆ̃uit and compute a HAC estimator as

ˆ̄Ω = ˆ̄Γ0 +
∑T−1

s=1 k(s/M)(ˆ̄Γs +
ˆ̄Γ′
s),

where ˆ̄Γs =
1
T

∑T
t=s+1

ˆ̄νt ˆ̄ν
′
t−s. Defining ˆ̄Ω equals

ˆ̄Ω =
1

T

T∑
t=1

T∑
s=1

Kts ˆ̄νt ˆ̄ν
′
s,

where Kts = k(|t− s| /M) is the Bartlett kernel with bandwidth M ≈ T 1/3.

Thus, the estimation of variance-covariance matrix of β̂M2 has the following

sandwich form,

V̂β2 = T (
∑N

i=1

∑T
t=1x̃itx̃

′
it)

−1 ˆ̄Ω(
∑N

i=1

∑T
t=1x̃itx̃

′
it)

−1.

According to Theorem 2.3 of Gao et al. (2023), E(V̂β2) = Vβ2 + op(1),

as (N, T ) → ∞. Under our two-way Mundlak projection transformation, the

panel data model with the interactive fixed effects becomes the pooled panel

data model. Thus, it’s convenient to apply the wild bootstrap and robust

inference in the spirit of Gao et al. (2023) in Section 4 and Vogelsang (2012)

in Section 5 below.

We can also derive the asymptotic distribution of β̂M2 under fixed T

and N → ∞, or fixed N and T → ∞. For example, if T is finite and under

Assumptions, thus the Corollary 1 can be derived. The case of fixed N and

T → ∞ can be derived similarly.

Corollary 1 Under the Assumptions N−1/2
∑N

i=1Xtiuit
d→ N(0,ΦN) with ΦN =

plim
N→∞

1
N

∑N
i=1

∑T
t=1

∑N
j=1

∑T
s=1E(uitu

′
js)XtiX′

sj, and
1
N
X̃ ′X̃ converges to nonsingu-

lar matrix as N → ∞, then

√
N(β̂M2 − β)

d→ N(0, Vβ2),

with ΨN = plim
N→∞

1
N
X̃ ′X̃ and Vβ2 = Ψ−1

N ΦNΨ
−1
N .
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3 The Two-way Mundlak Projection in the Inter-

active Form (CIF)

In general, the regressors xit can be correlated with the factor structure λ′
ift in an

interactive form. In such cases, the validity of the approach described in Section 2

would require more stringent assumptions. Specifically, under the model

yit = β0 + x′
itβ + x′

·tρi + x′
i·δt + x′

i·A
′Bx·t + η′iξt + εit,

if the factor structure λ′
ift is correlated with xit, then η′iξt in the composite errors uit

also be correlated with xit.

In this section, we first show that under certain specific situations, the two-way

Mundlak projection method proposed in Section 2 still works even with the interactive

form. Second, we propose a hybrid approach by combining the two-way Mundlak

projection method with instrument variables. The validity of the new approaches under

the general setup with the interactive form is show.

Remark 4: In addition, we note that the averaging method in p.647 of Hsiao (2018)

and other one-way or two-way transformed estimation are also not applicable in the gen-

eral case with the interactive form. More specifically, given that E(ηi) = 0 or E(ξt) = 0,

averaging both sides of equation (8) along the time and/or individual dimension gives

yi· = (β0 + c′d) + x′
i·β + x′

··ρi + x′
i·δ̄· + x′

i·A
′Bx·· + η′id+ c′ξ̄· + ηi

′ξ̄· + ε̄i· (15)

y·t = (β0 + c′d) + x′
·tβ + x′

·tρ̄· + x′
··δt + x′

··A
′Bx·t + η̄′·d+ c′ξt + η̄′·ξt + ε̄·t (16)

y·· =
1

NT

∑T

s=1

∑N

j=1
yjs = (β0 + c′d) + x′

··β + x′
··ρ̄· + x′

··δ̄· + x′
··A

′Bx··

+η̄′·d+ c′ξ̄· + η̄′· ξ̄· + ε̄··,

where δ̄· =
1
T

∑T
s=1 δs = A′d+ ξ̄ and ρ̄· =

1
N

∑N
j=1 ρj = B′c+ η̄· For large T (or N), (or

assuming) averaged ξ̄· = 0, equation (15) becomes

yi· = (β0 + c′d+ c′Bx··) + x′
i·(β + A′d+ A′Bx··) (17)

+(ηi
′(d+Bx··) + ε̄i·),

y·t = (β0 + c′d+ x′
··A

′d) + x′
·t(β +B′c+B′Ax··) (18)

+((x′
··A+ c)ξt + ε̄·t),

Thus, the ordinary least square estimation using time averaged data (17) is inconsistent,

as β + A′d + A′Bx·· is different from β, due to the additional terms x′
i·δt + x′

i·A
′Bx·t

12



in equation (8). Similarly, the ordinary least square estimation using cross-section

averages (18) is inconsistent, due to the additional terms x′
·tρi + x′

i·A
′Bx·t in equation

(8). It is therefore different from the case in equations (2.4) and (2.5) of Hsiao (2018)

on p.647.

3.1 The General Interactive Form

Let gt be the r′ × 1 dimensional unobservable common factors in the data generating

process of the regressors xit, similar to the setup of CCE. Specifically, we explicitly write

the interactive form between the regressors xit and the factor structure1 as follows:

xit = Γ′
ixgt + hit, (19)

where Γix denotes the factor loadings of xit, which is correlated with λi, and hit

denotes the idiosyncratic error, which is also called the de-factored version of the re-

gressors xit in the literature; e.g., see Cui et al., (2022), Cui et al. (2023), Cao et al.

(2023) and others.

Intuitively, we consider the following two cases. For simplicity, let ft = (f ′
t1, f

′
t2)

′.

First, if xit is correlated with certain part of the common factors such as ft1 and

uncorrelated with ft2, then we expect that the space of gt in model (19) is related with

the space of ft1. Thus, we could control the correlation between the regressors and the

factor structure by controlling for gt. Similar to Juodis, Karabiyik, Westerlund

(2021), we allow for the possibility that some of the factors that enter the

equation for xit, do not enter the equation for yit. Second, if xit is correlated with

the whole common factor ft in yit, then we expect that the space of gt in model (19)

should at least cover the space of ft given r′ ≥ r.

Furthermore, we need to distinguish between three cases, regarding the

rank of the r′ × p dimensional matrix Γix and the factor number r. First, in

the case that r ≤ r′ ≤ p, Γix is a full row rank matrix and we could transform

equation (19) into the setup of equations (3) and (7). The full row rank of

Γix ensure that Assumption 1 is valid and the two-way Mundlak projection

method in section 2 remains valid even under interactive forms. Specifically,

1Similar to Freeman and Weidner (2023), the relationship between the regressor and the fac-
tor structure can be written as the nonparametric format, such that for j = {1, · · · , p}, xit,j =∑r′

s=1 σsφx(αi)ψx(γt)+hit,j ,where hit,j is the idiosyncratic errors for each regressor xit,j . Thus, it can
be represented as the interactive form where gt = ψx(γt) be the r

′×1 dimensional unobserved common
factors and Γi = σsφx(αi) is its factor loadings for each regressors,

13



according equation (1), x̄·t = Γ̄′
xgt + h·t, with h·t =

1
N

∑N
i=1 hit

p→ 0p×1 as N → ∞.

Thus, (Γ̄xΓ̄
′
x)

−1Γ̄′
xx̄·t

p→ gt, and then MX̄G
p→ 0T×r′ , as N → ∞.

Second, in the case that r′ > p ≥ r,the number of regressors is not smaller

than the number of common factor that enter the equation for yit. We can

divide gt into two parts gt = (f ′
t , g

′
t,−y)

′, and then we can transform equation

(19) into

ft = B1
r×p

x·t + B2
r×(r′−r)

gt,−y + ξ†t .

where ξ†t is the projection’s error. The Mundlak projection introduces the

additional correlation between regressor xit and gt,−y, thus the pooled least

squared is still invalid.

Last, for the case that r′ ≥ r > p, such that the rank condition is not

satisfied, we can not project all the common factors and factor loadings

into the space of the cross-sectional xit as the two-way Mundlak’s format of

equations (3) and (7). Thus, the two-way Mundlak projection in Section

2 can be invalid and thus we propose the following methods of Section

3.2, which combine the previous two-way Mundlak projection method with

instrumental variables.

3.2 Two-way Mundlak Projection with Instrumental Variables

In the economic forecasting, the unobserved common factors can be estimated by many

observed macroeconomic variable (Stock and Watson, 2002). Bai and Ng (2010) used

the exogenous variable in the data rich environment to estimated the common factors.

In line with those spirit, we use the exogenous variables to fill the rank deficiency of

the equation (19).

A large panel of macroeconomic variables zit are also driven by the common factors

gt as equation (19), such that

zit
q×1

= Γ′
izgt + ζit, (20)

where Γiz is the r′ × q factor loadings and ζit is the error. Thus, we combine the (19)

with above (20), obtaining the augmented regressors x∗
it

x∗
it

(p+q)×1

=

(
xit

zit

)
=

(
Γ′
ix

Γ′
iz

)
gt +

(
hit

ζit

)
= Γ′

igt + ϑit (21)
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where Γi = (Γix,Γiz) and ϑit = (h′
it, ζ

′
it)

′. The equation (20) makes sure p+ q > r′ ≥ r.

Let x∗
·t =

1
N

∑N
i=1 x

∗
it and x∗

i· =
1
T

∑T
t=1 x

∗
it. Thus, we can project the common factor

ft and the factor loadings λi into the spaces of the cross-sectional and time average of

the augmented regressor x∗
it as the following two-way Mundlak’s projection,

ft = Bx∗
·t + ξ∗t ,

and

λi = Ax∗
i· + η∗i .

Next, we repeat the procedure in the equations (8)-(10) and then obtain

MX̄∗YMX∗ = β1 ·MX̄∗X1MX∗ + ....+ βp ·MX̄∗XpMX∗ +MX̄∗U∗MX∗ . (22)

where X∗

N×(p+1)

= (x∗
1·, x

∗
2·, ..., x

∗
N ·)

′, X̄∗
T×(p+1)

= (lT , X̄
∗
·,1, · · · , X̄∗

·,p) and MX̄∗ = IT −

X̄∗(X̄∗′X̄∗)−1X̄∗′,MX∗ = IT − X∗(X∗′X∗)−1X∗′. The composite error u∗
it = η∗′i ξ

∗
t + εit

and u∗
i = (u∗

i1, u
∗
i2, · · · , u∗

iT )
′, U∗

T×N
= (u∗

1, u
∗
2, ..., u

∗
N).

Last, we collect all the transformed regressors for individual i at period t, X̃∗
NT×p

=

[vec(MX̄∗X1MX∗), · · · , vec(MX̄∗XpMX∗)]. Similarly, let Ỹ ∗
NT×1

= vec(MX̄∗YMX∗), and

Ũ∗
NT×1

= vec(MX̄∗U∗MX∗). Thus, equation (22) can be further parameterized by

Ỹ ∗ = X̃∗β + Ũ∗, (23)

and the least squared estimator is also defined as

β̂M4 = (X̃∗′X̃∗)−1X̃∗′Ỹ ∗. (24)

We give the similar Assumptions of Section 2.

Assumption 4 (i) E||x̃∗
it|| < ∞; (ii) the matrix 1

NT
X̃∗′X̃∗ converges to non-singular

matrix, as (T,N) → ∞.

Assumption 5 (i) u∗
it is independent of x̃∗

it; (ii) Given x̃∗
it, let U∗

t = (u∗
1t,··· ,u

∗
Nt)

′,

and Ū∗
t = 1√

N

∑N
i=1 u

∗
it, in which U∗

t follows a process U∗
t = g(θt, θt−1, · · · ) with θt =

(θ1t, · · · , θNt)
′ being a sequence of independent and identically distributed random vec-

tors, E(θt|x̃∗
it) = 0N , and g(·) is a measurable function. In addition, let Ū⋆

t = 1√
N
U∗′
t 1N ,

where U⋆
t = g(θt, · · · , θ1, θ′0, θ′−1, · · · ) is the coupled version of Ut, and θ′t is an indepen-

dent copy of θt. Suppose that
∑∞

t=0 t
2δUt,κ < ∞, for κ ≥ 4, where δUt,κ = ||Ūt − Ū⋆

t ||κ.

15



Under above Assumptions and let X∗
NT×p

= (MX∗ ⊗MX̄∗)X̃∗, the (i− 1)T + t row of

X is denoted by X∗
ti

p×1

, we obtain the following Proposition.

Theorem 2 Under Assumptions 4-5, as (T,N) → ∞, then

√
NT (β̂M4 − β)

d→ N(0, Vβ4).

where Vβ4 = Ψ∗−1
NT Φ

∗
NTΨ

∗−1
NT with Ψ∗

NT = plim
(N,T )→∞

1
NT

X̃∗′X̃∗ and

Φ∗
NT = plim

(T,N)→∞

1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

E(u∗
itu

∗′
js)X∗

tiX∗′
sj,

where u∗
it = η∗′i ξ

∗
t + εit.

We can also estimate Vβ4 by the panel HAC estimation. Let ν̂∗
it

p×1

= x̃∗
itû

∗
it

with û∗
it = ỹ∗it − x̃∗′

it β̂M4. Define ˆ̄ν∗
t =

∑N
i=1 x̃

∗
itû

∗
it and compute a HAC estimator

as
ˆ̄Ω∗ = ˆ̄Γ∗

0 +
∑T−1

s=1 k(s/M)(ˆ̄Γ∗
s +

ˆ̄Γ∗′
s ),

where ˆ̄Γ∗
s = 1

T

∑T
t=s+1

ˆ̄ν∗
t
ˆ̄ν∗′
t−s. Thus, the variance-covariance matrix of β̂M4 is

estimated by

V̂β4 = T (
∑N

i=1

∑T
t=1x̃

∗
itx̃

∗′
it)

−1 ˆ̄Ω∗(
∑N

i=1

∑T
t=1x̃

∗
itx̃

∗′
it)

−1.

4 Endogenous Regressors

In empirical application, the endogeneity of data popularly exits. In this section,

xit = (x′
1it, x

′
2it)

′, in which x1it is a p1 × 1 vector of exogenous variables x1it and x2it

is p2 × 1 vector of endogenous variables. In particular, cov(x1it, εit) = 0, and x2it are

correlated with εit, such that cov(x2it, εit) ̸= 0, leading to the inconsistent estimator by

the estimator in Section 2.

4.1 The Mundlak-Control Function approach

Let z2it is m× 1 vector of additional exogenous variables or instrument variables with

m ≥ p2 and zit = (x′
1it, z

′
2it)

′. The endogenous regressors x2it has linear reduced form,

x2it = α′zit + qit. (25)
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ˆ̄Ω∗ = ˆ̄Γ∗
0 +

∑T−1
s=1 k(s/M)(ˆ̄Γ∗

s +
ˆ̄Γ∗′
s ),

where α is the coefficient and qit is the error. The control function approach (CF;

Wooldridge, 2015) assume the error term εit is expressed by the error term qit in equation

(25)

εit = q′it π
p2×1

+ϖit. (26)

Let ωit = η′iξt + ϖit, ωi· = (ωi1, ωi2, ..., ωiT )
′, and ω

T×N
= (ω1·, ω2·, ..., ωN ·). Qj

T×N
are

T×N matrix being the jth additional error matrix [qjit]
T,N
t=1,i=1, associated with parameter

πj for j = {1, 2, · · · , p2}. Plugging equation (26) into equation (10) gives

MX̄YMX =
∑p

j=1βj ·MX̄X
jMX +

∑p2
j=1πj ·MX̄Q

jMX +MX̄ωMX (27)

Compared with equation (10), controlling for the correlation between xit and factor

structure, equation (27) add additional term
∑p2

j=1πj · MX̄Q
jMX to control for the

endogeneity between between xit and εit. If Q
j is observed, the least square estimators

of (27) is consistent. We only interest in the slope β and then partial out nuisance

parameters.

Furthermore, we vector the variables in equation (27) as Section 2. Similarly, Q
NT×p

=

[vec(MX̄Q
1MX), · · · , vec(MX̄Q

p2MX)], and ω̃ = vec(MX̄ωMX). Thus, equation (27)

can be further parameterized by

Ỹ = X̃β +Qπ + ω̃. (28)

Since qit is not observed in practice, we then follows two-step procedure to estimate

the parameters in the spirit of the control function approach. In the first step, run

regression (25) to obtain residuals

q̂it = x2it − (
∑N

i=1

∑T
t=1x2itz

′
it)(

∑N
i=1

∑T
t=1zitz

′
it)

−1zit,

and then Q̂ obtained as above definition. In the second step, after plugging Q̂ into

transformed variables, we lastly obtain the interested coefficients β, by the pooled

estimator

β̂M4 = (X̃ ′MQ̂X̃)−1X̃ ′MQ̂Ỹ . (29)
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4.2 Asymptotic Properties

Assumption 6 (i) E(qit) = 0, and E(||qit||4) < ∞ for all i, t; (ii) E(qitq
′
js) = Σq,ijts

with constant ||Σq,ijts|| < ∞ for all i, j, t, s. (iii) for j = {1, · · · , p2},E(x1itq
j
it) =

E(zitq
j
it) = 0.

Assumption 7 (i) E||zit||4 < ∞; (ii) the matrices (NT )−1
∑N

i=1

∑T
t=1 zitz

′
it and (NT )−1X̃ ′MQX̃

converges to non-singular matrix, as (T,N) → ∞.

Assumption 8 (i) ωit is independent of x̃it, qit and zit (ii) Given x̃it and zit, let Wt =

(ω1t,··· ,ωNt)
′, and W̄t =

1√
N

∑N
i=1 ωit, in which Wt follows a process Wt = g(θt, θt−1, · · · )

with θt = (θ1t, · · · , θNt)
′ being a sequence of independent and identically distributed

random vectors, E(θt|x̃it, zit) = 0N , and g(·) is a measurable function. In addition, let

W̄ ⋆
t = 1√

N
W ⋆′

t 1N , where W ⋆
t = g(θt, · · · , θ1, θ′0, θ′−1, · · · ) is the coupled version of Wt,

and θ′t is an independent copy of θt. Suppose that
∑∞

t=0 t
2δUt,κ < ∞, for κ ≥ 4, where

δUt,κ = ||W̄t − W̄ ⋆
t ||κ.

Similar to Section 2.3, according to Assumptions 2, 6, 7 and 8, we obtain:

(i) Let X̃
NT×p

= (MX ⊗MX̄)MQX̃, and its the (i− 1)T + t row of X̃ is X̃ti
p×1

,

(NT )−1/2
∑N

i=1

∑T
t=1X̃tiωit

d→ N(0,Θ
(1)
NT ),

where Θ
(1)
NT = plim

(T,N)→∞

1
NT

∑N
i=1

∑T
t=1

∑N
i′=1

∑T
s=1 E(ωitω

′
i′s)X̃tiX̃′

si′ . is p× p dimensional

nonsingular positive matrix.

(ii) Z̃
NT×p

= (MX ⊗MX̄)MQX̃MZ , and the (i− 1)T + t row of Z̃ is Z̃ti
p×1

,

(NT )−1/2
∑N

i=1

∑T
t=1Z̃tiπ

′qit
d→ N(0,Θ

(2)
NT ),

where Θ
(2)
NT = plim

(T,N)→∞

1
NT

∑N
i=1

∑T
t=1

∑N
i′=1

∑T
s=1E(qitq

′
i′s)Z̃tiπ

′πZ̃′
si′ is p×p dimensional

nonsingular positive matrix.

Under above Assumptions, we can show the MLS estimator, combined with control

function approach is also consistent.

Proposition 1 Under Assumptions 1, 2, and 6-8, as (T,N) → ∞, then

√
NT (β̂M4 − β)

d→ N(0, Vβ4).
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where Vβ4 = Ψ̃−1
NTΘNT Ψ̃

−1
NT with Ψ̃−1

NT = plim
(N,T )→∞

1
NT

X̃ ′MQX̃ and ΘNT = Θ
(1)
NT +Θ

(2)
NT .

5 The Dependent Wild Bootstrap (DWB) Tests

(Need to adjust) As stated above, for s = {2, 3, 4}, the variance of
√
NT (β̂Ms−

β) is not feasible to be estimated by traditional Panel HAC estimation. In

this section, we apply the DWB procedure with B repetitions for obtaining the sequence

β̂∗
Ms,b, b = {1, · · · , B}, and then estimating Vβs. Specifically, we illustrate the procedures

by estimating Vβ2 and show its asymptotic properties. The estimating of Vβ3 and Vβ4

can be derived similarly and then are omitted. An l-dependent time series ϵt satisfying

the following condition:

Assumption 9 Let E(ϵt) = 0, E(ϵ2t ) = 1, E(ϵ4t ) < ∞,E(ϵtϵs) = k( t−s
l
), where 1

l

and l
T

→ 0, as (l, T ) → ∞, and k(·) is a symmetric kernel function defined on

[−1, 1] satisfying that k(·) is Lipschitz continuous on [−1, 1], k(0) = 1, and K(d) =´∞
−∞ k(u)e−iuddu ≥ 0 for all d ∈ R.

The DWB estimator of Vβ2 is given by the bootstrap population variance–covariance

matrix of (β̂∗
M2−β̂M2), conditional on the original data, that is V̂ boot

M2 = V ar∗(β̂∗
M2−β̂M2),

implemented under the following steps:

1. After get the consistent estimator β̂M2, we get ˆ̃uit = ỹit − x̃itβ̂M2,

2. DWB procedure (which is repeated B times)

(a) Generating ũ∗
it,b = ˆ̃uitϵt, for t = {1, · · · , T};

(b) Generating ỹ∗it,b = x̃ttβ̂M2 + ũ∗
it,b, for t = {1, · · · , T};

(c) obtaining Mundlak type estimator β̂∗
M2(b) = (

∑N
i=1

∑T
t=1 x̃itx̃

′
it)

−1(
∑N

i=1

∑T
t=1 x̃itỹ

∗
it,b);

3. Calculate the bootstrap standard error based on the series β̂∗
M(b), b = {1, 2, · · · , B},

V̂ boot
M2 =

1

B − 1

∑B
b=1(β̂

∗
M2(b)−

¯̂
β∗
M2)(β̂

∗
M2(b)−

¯̂
β∗
M2)

′

with
¯̂
β∗
M2 =

1
B

∑B
b=1 β̂

∗
M2,b.
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We test the null hypothesis H0
a : βj = β0

j , j ∈ {1, · · · , p}, with scalar β0
j , against the

alternative hypothesis H1
a : β ̸= β0. Traditional T test is adaptive, such as TM2,j =

V
−1/2
β,jj (β̂M2,j − β0

j ) with Vβ2,jj is the jthdiagonal element of Vβ2, if Vβ2 is consistent

estimated or known in prior. Thus, according to Theorem 1, then TM2,j
d→ N (0, 1) .

The bootstrap T statistic is T ∗
M2,j = (V̂ boot

M2,jj)
−1/2(β̂∗

M2,j(b) − β̂M2,j) with V̂ boot
M2,jj is the

jthdiagonal element of V̂ boot
M2 and its p-value p∗T = 1

B

∑B
b=1 1{|β̂∗

M2,j(b)− β̂M2,j| > |β̂M2,j−
β0
j |}.
For the multivariate null hypothesis H0

b : R1
l×p

β = θ1, with θ1 being an l × 1

constant vector, against the alternative hypothesis H1
b : R1β ̸= θ1, the Wald-

type statistics is WM2 = NT (R1β−θ1)
′(R1Vβ2R

′
1)

−1(R1β−θ1)
′ and its asymptotic

distribution is χ2
p, if Vβ2 is available. Since Vβ2 is infeasible, instead of V̂ boot

M2 ,

the bootstrap Wald test is applied, W ∗
M2 = (β̂∗

M2−β̂M2)
′R′

1(R1V̂
boot
M2 R′

1)
−1R1(β̂

∗
M2−

β̂M2). (W
∗
M2 is compared with which statistic?)

We give another Assumption 10, same as Assumption 3 in Gao et al. (2023), let ⌊q⌋
denotes the largest integer not larger than q,

Assumption 10 For q ∈ ⌊q⌋ , suppose that lim|x|→0
1−k(x)
|x|q = bq for some real number

0 < bq < ∞.

Let P ∗ is the probability measure induced by the wild bootstrap conditional on the

observed data, and then we have following Theorem 3.

Theorem 3 Under Assumptions 1-3, 9, 10, as (T,N) → ∞, then

(i) If B → ∞,

(NT )−1V̂ boot
M2

p∗→ Vβ2;

(ii)

sup
τ

|P ∗ (T ∗
M2 ≤ τ)− P (TM2 ≤ τ)| p→ 0,

and

sup
τ

|P ∗ (W ∗
M2 ≤ τ)− P (WM2 ≤ τ)| p→ 0.

To select the optimal l above, Gao et al. (2023) minimized the mean squared error

and they suggest that if q = 1, lopt = O(T 1/3) and if q = 2, lopt = O(T 1/5).
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6 The Robust Tests

Following the spirit of robust inference in Vogelsang (2012), we propose a robust testing

statistics, which is robust for heteroskedasticity, serial correlation and cross-sectional

dependence in the error term Ũ . Here, we also illustrate the testing via the Mundlak

estimator β̂M2. Let ν̂it
p×1

= x̃it
ˆ̃uit with ˆ̃uit = ỹit − x̃′

itβ̂M2. Define ˆ̄νt =
∑N

i=1 x̃it
ˆ̃uit and

compute a HAC estimator as

ˆ̄Ω = ˆ̄Γ0 +
∑T−1

s=1 k(s/M)(ˆ̄Γs +
ˆ̄Γ′
s),

where ˆ̄Γs =
1
T

∑T
t=s+1

ˆ̄νt ˆ̄ν
′
t−s.

ˆ̄Ω is equivalent to be expressed as

ˆ̄Ω =
1

T

T∑
t=1

T∑
s=1

Kts ˆ̄νt ˆ̄ν
′
s,

where Kts = k(|t− s| /M) is the Bartlett kernel with bandwidth M. According to the

definition of uit, we select the bandwidth equal to the sample size M = T , as in Kiefer

and Vogelsang (2002). Thus, the estimation of variance-covariance matrix of β̂M2 has

the following sandwich form,

V̂HACSC = T (
∑N

i=1

∑T
t=1x̃itx̃

′
it)

−1 ˆ̄Ω(
∑N

i=1

∑T
t=1x̃itx̃

′
it)

−1.

Based on above state, we consider the test for R2β = θ2, against R2β ̸= θ2 with R2 is

a l× (p+ 1) matrix and θ2 is a l× 1 dimensional constant. Thus, we define the robust

Wald test,

WaldHACSC = (R2β̂M2 − θ2)
′(R2V̂HACSCR

′
2)

−1(R2β̂M2 − θ2).

and in the case with l = 1,the robust T type statistics is

tHACSC =
R2β̂M2 − θ2√
R2V̂HACSCR′

2

.

For a ∈ (0, 1], Wl(1, a) denotes a l × 1 dimensional vector of standard Brownian

motion and Bl denote a l × 1 dimensional standard Brownian bridges. In addition,

Assumption 11 For a ∈ (0, 1], the matrix plim(N,T )→∞(NT )−1
∑N

i=1

∑[aT ]
t=1 x̃itx̃

′
it =

aΨ and Ψ are assumed to be non-singular.
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Assumption 12 For a ∈ (0, 1] and Wp(1, a) denotes a p× 1 vector of standard Brow-

nian sheets, (NT )−1/2
∑N

i=1

∑[aT ]
t=1 x̃itũit ⇒ ΛWp(1, a) and Q are assumed to be non-

singular.

Assumption 13 The process x̃itũit is a mean zero vector of three dimensional station-

ary random fields indexed by i, t, s.

Under the fixed b asymptotic framework, in our particular setup b = 1, the test

statistics weakly convergence to random matrix under above Assumptions, which are

borrowed from Kiefer and Vogelsang (2005) ,Vogelsang (2012) and others.

Theorem 4 Under Assumptions 1, 11-13, as (T,N) → ∞, then

WaldHACSC ⇒ Wl(1)
′[2
´ 1
0
Bl(r)Bl(s)

′dr]−1Wl(1),

and

tHACSC ⇒ W1(1)√
2
´ 1
0
B1(r)2dr

.

To simplify, we use the Bartlett kernel with bandwidth M equal to the sample size

T , such that b = 1 in the fixed b asymptotic theorem. The critical values of the T test

are reported in Table 1 of Kiefer and Vogelsang (2002) and the critical value of the Wald

Testing for q = 1, 2, · · · , 30 can be obtain by multiplying 0.5q the critical value in Table

II in Kiefer, Vogelsang and Bunzel (2000). For the fixed b asymptotic distribution of the

testing statistics with 0 < b ≤ 1 and other kernel, such that Case (i) twice continuously

differential kernel or Case (ii) twice continuously differential kernel with continuity in

Kiefer and Vogelsang (2005) and Vogelsang (2012), are also appropriate in our paper.

The critical values for the asymptotic distributions of the Wald and T tests refer to

Table B in Vogelsang (2012).

7 Monte Carlo Simulations

This section provides Monte Carlo simulations to examine finite sample performance

of our proposed the Mundlak least squared estimators of Section 2 (MLS2), Section

3 (MLS3). We compared those estimators with the CCE approach (Pesaran, 2006),

IFE (Bai, 2009), MLE (Bai and Li, 2014), ATE (Hsiao et al., 2021). For the case of
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endogeneity, we compare the results of our proposed Mundlak-Control methods (MLS2-

CF and MLS3-CF ), with the common correlated estimator with instrumental variables

(IVCCE; Harding and Lamarche, 2011); the profile GMM estimator (PGMM; Hong et

al., 2023) and the average transformed GMM estimator (TGMM; Hsiao et al., 2023).

For all the simulations, the data {yit, xit} are generated as,

yit = x′
itβ + λ′

ift + εit,

where the true slopes β = (β1, β2)
′ with β1 = 1 and β2 = 2. The factor loadings λi =

(λi1, λi2)
′ are set as λi1 ∼ iidχ2(1) and λi2

iid∼ N(0.2, 0.2). For t = {−49, ....0, ...., T}, let
vft ∼ iidχ2(3)− 3 with ρf = 0.5, fi,−50 = 0. the common factors ft = (ft1, ft2)

′ follows

AR(1) process,

ft = ρfft−1 + vft.

For the errors εit, we consider two cases: (i) εit follows stationary AR(1) process

with heteroskedasticity across each i. Let ρiε ∼ iidU [0.5, 0.9], σi ∼ iidU [0.8, 1.8], ζit ∼
iidχ2(3)− 3 for both i and t = {−49, ....0, ...., T},

εit = ρiεεi,t−1 + σi(1− ρ2iε)
0.5ζit,

where εi,−50 = 0. (ii) εit follows stationary AR(1) process with cross-sectional depen-

dence and heteroskedasticity across each i. f ∗
t ∼ iidN(0, 1) is one additional factor,

with loadings λ∗
i ∼ iidχ2(2)− 2, which are uncorrelated with xit. The errors

εit = λ∗
i f

∗
t + ρiεεi,t−1 + σi(1− ρ2iε)

0.5ζit.

We replicate each experiments 500 replications and report the root mean squared

errors (RMSE) and mean bias (Bias) of β̂1, under different combination of samples,

such that N = {20, 50, 100, 200} and T = {20, 50, 100, 200}. Let vit,1 ∼ iidN(0, 1) and

vit,2 ∼ iidχ2(3)− 3, the regressors xit are driven by various combination of factor struc-

ture and vit = (vit,1, vit,2)
′, stated below. In the iterative estimation by the approach

of IFE, MLE and ATE, we allow for the maximum number of iterations reaches 2000,

until ||β̂s+1 − β̂s|| < 0.0001,at the s + 1 step. In our simulations, we found the ATE

has the fast converge rate of iterative estimation and MLE has the lowest converge rate

of iterative estimation. The initial values of slope in all the iterative algorithm is the

least squared estimator.
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7.1 Data generating process of xit

We consider various correlations between regressors xit and factor structure stated below

DGP1-DGP4, another DGP are show in the Appendix.

DGP 1(CLF): the regressors xit are driven by linear combination of factors and its

loadings,

xit,1 = 3ft,1 + λi,1 + 2ft,2 + λi,2 + vit,1,

xit,2 = ft,1 + 2λi,1 + 2ft,2 + 3λi,2 + vit,2.

DGP 2 (CIF1; Bai and Li, 2014): Let ϵi1 ∼ iidN(0.5, 1), ϵi2 ∼ iidN(0.2, 1), ϵi3 ∼
iidN(0, 1), ϵi4 ∼ iidN(0.7, 1). We set three regressors and two factor, in which the

regressors are driven by

xit =

 xit,1

xit,2

xit,3

 =

 λi1, λi2,
λi1 + ϵi1, λi2 + ϵi2,
λi1 + ϵi3, λi2 + ϵi4,

 ft + vit,

such that Γ
′
=

 0.5 0.3
1 0.5
0.5 1

 is of full row and full column rank.

DGP 3 (CIF2; Bai, 2009; Hsiao et al., 2021): the regressors xit are driven by

interactive effects and linear combination of factors and its loadings,

xit,1 = 1 + λ′
ift + ft,1 + λi,1 + ft,2 + λi,2 + vit,1,

xit,2 = 1 + λ′
ift + ft,1 + λi,1 + ft,2 + λi,2 + vit,2.

DGP 4 (CLF, CIF1 with Additive effects): additive two-way fixed effects,

where the xit is same as that of DGP 1, DGP 2 and

yit = x′
itβ + λ′

ift + αi + τt + εit,

where αi = (x̄i,1 + x̄i,2)/2 − 1
N

∑N
i=1((x̄i,1 + x̄i,2)/2) + νi with νi ∼ iidN(0, 1), and

τt = (x̄t,1 + x̄t,2)/2 − 1
T

∑T
t=1((x̄t,1 + x̄t,2)/2) + νt with νt ∼ iidN(0, 1). As note by Bai

(2009), while the additive fixed effects and interactive fixed effects both exist, the data

should be handle firstly by the two-way transformation to eliminate the additive fixed

effects. Then, in DGP 3, the approach of CCE, IFE, MLE and ATE are conducted on

the two-way transformed data.
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DGP 5 (Endogeneity): the generating of data is same as Design of Hong et al.

(2023), exception that one-dimensional regressor xit are generated as linearly correlated

with ft,λi and εit,

xit = 1 + 3ft,1 + λi,1 + ft,2 + 2λi,2 + vit,

or in the interactive format

xit = 1 + f ′
tλi + ft,1 + λi,1 + ft,2 + λi,2 + vit.

Let zit = (zit,1, zit,2)
′ be the instrumental variables. For the errors in the model,

εit = ϵit + ρiεεi,t−1 + σi(1− ρ2iε)
0.5ζit.

The variables are generated as
vit
zit,1
zit,2
ϵit

 ∼ iidN

04×1,


1 0.5 0.5 η
0.5 1 0 0
0.5 0 1 0
η 0 0 1


 .

The endogeneity is depicted by the correlation efficient η between ϵit and vit. We set

η = 0.5 in our simulations.

7.2 Results

The results of the root of mean squared error (RMSE) and Bias of all experiments are

attached in Appendix B and additional simulations are show in Appendix C. In the

DGP 1, the regressors xit is linear correlated with factors and loadings, making the

CCE approach has larger RMSE and is inconsistent, show in Table 2. The RMSE of

our MLS2 and MLS3 estimators are similar to that of ATE and is smaller than that

of IFE and the MLE is most efficient estimator. From the view of Bias, our MLE has

better performance in the finite sample as MLE, other approaches have relative bigger

bias. Table 15 in the Appendix C reports the results of the DGP 1 with cross sectional

dependence in the errors. The dependence errors are generated by one additional unob-

served factor f ∗
t with loading λ∗

i . The cross-sectional dependence can also be modelled

by the spatial model. It shows that our MLE2 is robust. Table 16 in the Appendix C

extend the simulation of DGP 1, in which r̂ = 6. Table 17 in the Appendix C extends

the DGP 1 with the true factor number r = 4 and the estimated number of factors
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r̂ = 2. They all show our MLS are robust and consistent, thus those results all verify

Theorem 1.

Table 3 show the RMSE and Bias of DGP 2 with the interactive effects,

which is similar to the setup of Bai and Li (2014). It show that the CCE

approach has large RMSE and Bias, while the correlations between λi and

Γi exists. Due to the correlations, the IFE has largest RMSE and Bias. Our

MLS2 perform better that the CCE and a litter worse that MLE and ATE.

If the errors have larger heteroskedasticity across individuals, our MLS has

robust results than the MLE and ATE, as show in Table 4. In addition,

we also consider the case of two regressors and one common factors in the

Appendix C.

Table 5 and 6 show the RMSE and Bias of DGP 2 with the interactive effects,

for the independent and identically distributed errors (iid) and auto-correlated errors

respectively. For all the case, we select r̂′ = 4. In the case of independent and identically

distribution, the IFE has the lowest RMSE and bias in the case of auto-correlated errors.

Our MLS3 has robust results as the MLE and ATE.

Table 7 consider the estimation of interactive panel data model with additional

additive effects2. As show in tables, the CCE approach can not allow for additive

additive fixed effects, with large RMSE and Bias. Regardless of transformation, the

RMSE and Bias of our MLS remains the same magnitude, as those of DGP 1. However,

the IFE and MLE3 are consistent after transformation. Without transformation, the

ATE is s consistent and the RMSE and Bias are all larger than those of MLS and after

transformation, they are a litter larger than those of MLS3. Table 8 consider the

case of interactive form with additional additive effects, such that xit are

interactive correlated with λ′
ift in DGP 2. We can conclude that the RMSE

and Bias of our MLS remains the same magnitude as Table 3.

Table 9 and 10 consider the case of endogeneity, for the linear and interactive formats

between the factor structures and regressors. It shows that the RMSE and Bias of all the

estimators all decrease as the sample increase. The RMSE of MLS2-CF, MLS3-CF, and

TGMM has advantage in the smaller sample. For the large sample with N = T = 200,

the RMSE of PGMM and TGMM is similar. In all, the performance of PGMM and

TGMM is a litter better than our proposed estimator and the IV-CCE has the worst

performance.

2As noted in Bai (2009), the IFE needs the two-way transformation to eliminate the additive effects
firstly, show in Table 20 in the Appendix C.
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Table 12 reports the sample size and power of the wild dependent bootstrap estima-

tion, showing that the bootstrap test works well. Table 12 reports the sample size and

power of T test, plugging the estimated standard deviation of β1 by the wild dependent

bootstrap procedure. The good performance implied the estimated standard deviation

of β1 is consistent. Last, Table 14 show the sample size and power of the robust T

test. For the larger correlation of errors, it encounters more size distortion as show in

Vogelsang (2012).

8 Empirical Analysis

In this section, we apply our approach to empirically investigate the output elasticity

with respect to public infrastructure in an aggregate production function of China (Feng

and Wu, 2018; Feng, 2020). we compare the estimation of MLS with the Mean Group

(MG) estimates without considering unobserved factors, CCE mean group estimator

(Pesaran, 2006), and IFE (Bai, 2009), and MLE (Bai and Li, 2014).

The empirical model comes from the aggregate production function,

git = β0 + βbbit + βkkit + eit.

where git denotes the logarithm of the gross domestic product (GDP) per labor of the

province i at year t, and bit is the logarithm of public infrastructure stock per labor,

and kit is the logarithm of non-infrastructure capital stock per labor. Thus, βk and

βb are the estimated elasticizes of public infrastructure and non-infrastructure capital

respectively. Let λi denotes the unobserved provincial effect and γt is the unobserved

year’s effect. For the panels with the two-way fixed effect, eit = λi + γt + ϵit and for

the interactive model, eit = λ′
ift+ ϵit. To eliminate the nonstationality of data, the first

order difference of model is done firstly, such as ∆git = git− gi,t−1, and similar for ∆bit,

and ∆kit. Thus, the model becomes

∆git = β0 + βb∆bit + βk∆kit +∆eit.

The panel data set consists of the China’s 30 provincial infrastructure investments

over the period 1996–2015. This data set is collected from the website of National

Bureau of Statistics of China, used in Feng and Wu (2018). The summary statistics

of data refer to Table 1 in Feng (2020). The results by those methods are reported in

Table 1. The contents of the second column correspond to our proposed estimators.

From the results, we see that the estimated β̂b and β̂k by the MLS are only a lit different

from the results of other methods.
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Table 1: Output Elasticizes: Common Factors
Dependent Variable:

MG MLS IFE MLE CCEMG ATE
Independent variables: (1) (2) (3) (4) (5) (6)

βb 0.205*** 0.164*** 0.197*** 0.193*** 0.194*** 0.193***
(0.025) - (0.017) (0.018) (0.023) -
[0.029] [0.021] [0.021] [0.025] [0.021] [0.033]

βk 0.361*** 0.372*** 0.349*** 0.354*** 0.407*** 0.407***
(0.031) - (0.018) (0.019) (0.037) -
[0.039] [0.024] [0.020] [0.014] [0.039] [0.042]

Year effects Yes Yes Yes Yes Yes Yes
No. of observations 569 569 569 569 569 569

Overall R2 0.65 - - 0.67 0.72 -
Empirical features:
slope heterogeneity Yes No No No Yes No

cross-sectional dependence No Yes Yes Yes Yes Yes
Note: (1) For the IFE and MLE, two factors are assumed in the estimation and the time
effects are added. (2) the standard error of estimators are reported in parentheses and
the wild Bootstrapping standard error of MLS are reported in brackets. Specifically,
for the MG, the standard errors are adjusted for 30 clusters or provinces. Bai (2009)
in Section 6 show that IFE is a result of least squares with the effects being estimated
in the Section 6. Thus, the standard error of IFE is computed as the regife command
of the Stata. The standard error of MLE is computed as the Remark 2.6 of Bai and
Li (2014). The standard error of CCEMG is computed as equation (58) of Pesaran
(2006). (3) The stars, *, ** and *** indicate the significance level at 10%, 5% and 1%,
respectively.

9 Conclusion and Discussions

In this paper, we research the one-way and two-way Mundlak projection estimators

of the panel data model with the interactive fixed effects in detail, allowing the linear

and interactive correlation between the regressors and factor structure. In addition, we

also combined the CF approach to allow for the case of endogeneity. Those estimators

need not the iterative estimation procedure and have good theoretical and finite sample

performances, compared with many other estimators.

The framework of the Mundlak projection estimation can be extended to others

interactive effects panels, for example, the nonlinear panels with the interactive fixed

effects, dynamic panels with the interactive fixed effects, the panel quantile regression

with the interactive fixed effects. We will explore the estimation of those models by the
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Mundlak projection estimation in the future.
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