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Abstract

Nonstationary panels have been widely used in empirical studies in eco-
nomics, especially in macroeconomics and finance. This paper considers mul-
tiple structural changes in nonstationary heterogeneous panels with common
factors. Kapetanios, Pesaran, Yamagata (2011) showed that unobserved non-
stationary factors can be proxied by cross-sectional averages of observable data.
This means that unobserved error factors can be treated as additional regres-
sors, and different break points in slopes and error factor loadings can be
considered as multiple breaks in linear regression models with panel data. We
generalize the least squares approach by Bai and Perron (1998) to nonstation-
ary panels and show that the break points in both slopes and error factor
loadings can be consistently estimated for two important cases involving i)
nonstationary factors and ii) nonstationary regressors considered by Phillips
and Moon (1999). Monte Carlo simulations are conducted to study the per-
formance of the main results in finite samples. We illustrate our methods
with an empirical example finding a significant change in the effect of
international R&D spillovers on domestic total factor productivity
in OECD countries in 1992, and we attribute it to the accelerated
globalization starting from the early 1990s.
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1 Introduction

Nonstationary panel data models allowing for cross-sectional dependence using
a factor structure in the errors continue to be the focus of a lot of theoretical as
well as empirical studies in econometrics. Hsiao (2018) provides a very detailed
and insightful review of the main modeling and estimation approaches in the factor-
augmented panel data literature. Feng and Kao (2020) also give a textbook treatment
of this subject focusing on three main approaches for the factor-augmented panel
data models. They include Pesaran’s (2006) common correlated effects (CCE), Bai’s
(2009) iterated principal components (IPC), and the likelihood approaches proposed
by Bai and Li (2014). More recently, the transformed approach developed by Hsiao,
Shi, Zhou (2021) shows very good properties in dealing with error factors in panel
data models.

This paper contributes to the literature of nonstationary panels with common
factors by allowing for structural breaks in the slopes. It is motivated by Bai and
Kao (2006) who consider a panel cointegration model with stationary factors, which
are allowed to be correlated with the regressors. /nT-consistent fully modified
(2sFM) estimators of the slope parameters are derived. In a panel cointegration
model with nonstationary factors considered by Bai, Kao and Ng (2009), fac-
tors are treated as parameters, and the dependent variable cointegrates
with the regressors and factors. The IPC approach is applied to deal
with unobserved factors, as in Bai (2009), and the /nT-consistent contin-
uously updated bias-corrected (CupBC) and continuously updated fully
modified (CupFM) estimators of the slope parameters are proposed. Re-
cently, Huang, Jin, and Su (2020) and Huang, Jin, Phillips, Su (2021) introduce the
heterogeneity, modeled as a latent group structure in the slope parameters of the
panel cointegration model with nonstationary factors, thus adding two features of
heterogeneity and cross-section dependence in the nonstationary panel literature. A
penalized principal component estimation, which is an iterative procedure between
penalized regression and principal component analysis (PCA), is proposed to con-
sistently estimate group membership and the slope parameters. Different from the
homogeneous panel literature considered above, Kapetanios, Pesaran, and Yamagata
(2011, KPY hereafter) estimate a model of heterogeneous panels with nonstationary

factors. They find that the CCE approach proposed by Pesaran (2006) is still valid



for I(1) factors. In addition, Holly, Pesaran and Yamagata (2010) apply these meth-
ods to examine empirical features of the US housing markets.!

Following Huang et al. (2021) and Dong et al. (2021), this paper adds heterogene-
ity to the literature by considering multiple structural changes in the nonstationary
panels with common factors. Specifically, we consider multiple breaks in the slopes
and the error factor loadings in the heterogeneous panels with nonstationary regres-
sors and factors. As such, this paper enriches the literature of nonstationary panels
by accommodating two additional empirical features of multiple structural changes
and cross-sectional dependence. As in Pesaran (2006) and KPY, unobserved non-
stationary factors can be proxied by the cross-sectional averages of observable data.
Thus, unobserved error factors can be treated as additional regressors, and differ-
ent break points in slopes and error factor loadings can be considered as multiple
breaks in linear regression models with panel data. Therefore, we generalize the
least squares approach by Bai and Perron (1998) to nonstationary panels and show
that the break points in both slopes and error factor loadings can be consistently
estimated. In addition, different from KPY, we also consider the case of nonstation-
ary regressors after the CCE transformation. This model can be considered as an
extension of Phillips and Moon (1999, Section 5) to the case of allowing for an error
factor structure and multiple breaks in slopes. Similarly, a T-consistent estimator of
the heterogeneous slope parameters is obtained.

Estimation of structural breaks in panels has attracted a lot of attention since
Bai’s (2010) panel mean-shift model. Kim (2011) considers a common break in
a deterministic trend model for large panels with nonstationary or stationary er-
rors. Baltagi, Feng and Kao (2016, 2019, BFK hereafter) extend Pesaran’s (2006)
heterogeneous panels to the cases of common breaks in slopes with exogenous and
endogenous regressors. Baltagi, Kao and Wang (2015) apply Bai’s (2009) IPC
approach to deal with interactive fixed effects in the errors of a hetero-
geneous stationary panel with a common break in the slopes. Baltagi, Kao
and Liu (2017) look at the estimation of a break point in homogeneous nonstationary
panels with only one regressor and no error factor structure. These models mainly
focus on the case of a single common break. Li, Qian and Su (2017), Qian and

Su (2016) propose the adaptive group fused LASSO (AGFL) in panels with multi-

Dong, Gao and Peng (2021) propose a general model of nonstationary panels by considering
varying-coefficient slopes and factor loadings.



ple breaks in slopes, with and without interactive effects, respectively.? Lumsdaine,
Okui and Wang (2023) consider the estimation of panel group structure models with
structural breaks. Kaddoura and Westerlund (2023) study panel data models with
multiple structural breaks when 7 is fixed.?

Recently, Karavias, Narayan and Westerlund (2023) consider a single break in
stationary homogeneous panels with interactive effects, and Ditzen, Karavias and
Westerlund (2023) extend the analysis to the case of multiple breaks. Unlike these
two papers, we focus on nonstationary heterogeneous panels and nonstationary fac-
tors with multiple breaks. In addition, multiple breaks in factor loadings are also
considered in our paper. Thus, our model can be applied to empirical research using
aggregate level data over a long period, e.g., the international R&D spillover model.

This paper is also related to the literature on structural instability in factor
models since Stock and Watson (2009), and extensively studied by Breitung and
Eickmeier (2011), Chen, Dolado and Gonzalo (2014), Yamamoto and Tanaka (2015),
and Cheng, Liao and Schorfheide (2016). Recent advancements in this direction also
include Baltagi, Kao and Wang (2017), Bai, Han and Shi (2020), and Duan, Bai and
Han (2023), Baltagi, Kao and Wang (2021), Ma and Tu (2023).

The paper is organized as follows. Section 2 introduces the model of nonsta-
tionary panels with common factors and multiple structural changes in slopes and
error factor loadings. Section 3 presents the main ideas for estimation. Asymptotic
properties of the estimators are derived in Section 4. In Section 5, we consider the
case of additional nonstationary components in regressors. Monte Carlo simulations
are conducted in Section 6 and Section 7 displays an empirical application to inter-
national R&D spillovers. Section 8 provides concluding remarks. The mathematical
proofs are relegated to the Appendix.

Notation: For any matrix or vector A, the Frobenius norm of A is defined as

2There have been important work on estimating and testing for multiple structural changes in
the time series literature, including Bai (1997), Bai and Perron (1998, 2003), Qu and Perron (2007),
Kejriwal and Perron (2008), Maheu and Song (2018), Oka and Perron ( 2018), Bergamelli et al.
(2019), Pang et al. (2021), to name a few.

3The multi-break homogeneous panel data model with fixed T considered by Kad-
doura and Westerlund (2023) could be very useful in empirical studies. When T is
fixed, the difference between stationary and nonstationary data is irrelevant for the
proofs. Different from their model, we take a different approach by considering long
panel with nonstationary data. Thus, we connect our paper with the nonstationary
panels literature. When T is large, nonstationary data is treated differently from sta-
tionary data in the proofs. Consequently, the technical framework used is different,
including assumptions, convergence rates and proofs.



|A|| = v/tr(AA"). (N,T) — oo denotes N and T tend to infinity simultaneously. []
is the greatest integer function. Stochastic processes such as Brownian motion W (r)
on [0, 1] are written as W, integrals such as fcd W (r)dr as fcd W and stochastic inte-
grals fcd W (r)dW (r) as fcd WdW. B, denotes the Brownian motion with covariance

matrix Y,. "=" denotes weak convergence.

2 Model

By extending Pesaran’s (2006) influential framework to the nonstationary case,
KPY (2011) consider the following heterogeneous panel regression with nonstationary

factors:

v =20 +ifi +eu,i=1,..,N; t=1,..,T, (1)

where x; is a p x 1 vector of explanatory variables with heterogeneous slopes f;,
g is the idiosyncratic error, independent of x;, and ~; is the corresponding loading

vector.* The ¢ x 1 vector of unobserved factors f; follow I(1) processes,

Je = fio1 + ¢, (2)

¢y is the idiosyncratic error. x; follow an (1) processes under the Assumption of

commonly correlated effects,

Ty = Ui fe + vir, (3)

where I'; is an g x p factor loading matrix. wv; is a p X 1 vector of disturbances.
Thus, y;; is also nonstationary. KPY show that the CCE approach is robust to
nonstationary factors. v;; is assumed to be I(0) as in KPY, in what we call Case
1 in this and the next section. Case 2 assumes v;; to be I(1) and this is studied in
Section 5.
This paper generalizes KPY’s model (1) above by considering multiple breaks in
Bi:
v = 2, 8:(Ko) +vify +eu,i=1,. ,N;t=1,..,T. (4)

Common breaks in the slopes ;(Ky) could arise due to technological progress or ma-

jor policy shifts in a long time horizon. Assume there are mq breaks in the slope pa-

4The fixed effects model can be considered as a special case when the first component of
is 1 and the other components of the slope parameters ; are homogeneous. We examine the
performance of the break estimators in a fixed effects model in the Monte Carlo experiments.



rameters.” As in Bai and Perron (1998), Ky denotes an mq-partition (Ko 1, ..., Komg)s
and the value of the slopes (3;(Kg) vary across mg + 1 different regimes,® i.

57)17 t= 1a"'7K0,1a

e.,

Bi(Ko) = :
Bimo+1s t = Kome +1,...,T.

This model generalizes the analysis of stationary panels with a single break in
slopes by BFK (2016, 2019) to nonstationary panels with multiple structural breaks.
Thus, additional technical challenges are involved in the derivations of asymptotic
properties of estimators with nonstationary data in the case of multiple breaks.

Similarly, factor loadings v; could also suffer from structural changes, often seen
in the macroeconomic literature (Stock and Watson, 2009). Assume there are m;

breaks in the error factor loadings with an m;-partition 1y = (Ki1, ..., Kim,),

Vi1, t=1,.., K,
Yi(Ky) = :
/yi,m1+17 t:Kl,ml +1,,T
The model becomes
Y = Ty Bi(Ko) + (K1) fr + €, 1 =1,.,N; t =1,...,T. (5)

In addition, the nonstationary f; and z;; follow processes (2) and (3). Model (5)
includes model (4) above as a special case. We suppress the superscript 0 in the true
values of Iy and K; for now. Breaks K; in error factor loadings are allowed to have
overlaps with breaks ICy in the slopes. Different from breaks Iy in slopes to model
the changes in long-run structural relationship between y and x, breaks K; in error
loadings v; can be considered equivalent to the instability of the variance of errors
~ifi + € in (4), or changes in the error factor variance with constant loadings.

In the special case of mg = 2, m; = 1, of model (5), we assume Ky; < Koo < K1,

without loss of generality. Thus, three breaks Ky 1, Ko 2, K1 split the sample into 4

regimes:
v B + i fi + €, t=1,.., Ko
) Bt vinfiten, t=Koi+1, .., Kop (6)
Y= x{it/Bi3+ﬂyz{1ft+€it t= K072—|-1,...,K171

v Bis + VoSt &, t=Kiai+1,...T,

5To accommodate the case of partial structural changes in the slopes considered by Bai and
Perron (1998), w},o; can be added to the right-hand side of (4) to denote the regressors and their
corresponding slopes that are constant over time.

SIn this paper, we assume common breaks for the individual series in the panel. Kim (2014)
and Smith (2024) studied the case of heterogeneous breaks in the panel. However, to handle the
unobserved error factor structure in the model, we follow KPY’s CCE approach, which is not
applicable to heterogeneous breaks.



each of which can be considered the same as KPY. This is also the case when there
are multiple breaks in slopes and error factor loadings, i.e., mg > 1, m; > 1. We
follow KPY and use the CCE approach to deal with the unobserved nonstationary
factors f;. In this model, the parameters to be estimated include the slopes f;(Ko)
and the break points ICy, ;.

Like estimating break point Iy in slopes, estimating Iy in factor loadings is
equally important. As pointed out in the growing literature since Stock and Watson
(2009), the structural instability in the factor structure could have implications for
the accuracy of forecasting and number of estimated factors. In our model (5), ig-
noring the break K; in 7; could bias the estimates of the factor loadings in empirical
studies, e.g., US housing markets by Holly, Pesaran and Yamagata (2010). In addi-
tion, when the focus is on e, e.g., testing for remaining cross-sectional dependence
in €;; (Juodis and Reese, 2022), estimating K; is necessary for obtaining a consistent
estimate of ;.

Compared with Bai, Kao and Ng’s (2009) model of panel cointegration with
nonstationary factors, our model (5) adds two new empirical features: heterogeneous
slopes and structural breaks in slopes and factor loadings. Structural breaks here
can be regarded as a different way of modeling parameter heterogeneity from the
latent group structure considered by Huang et al. (2021). Besides, we apply the CCE
approach to deal with unobserved factors, instead of the IPC approach used in the two
papers above. In addition, different from BFK’s (2016, 2019) models of a common
structural break in heterogeneous panels with exogenous and endogenous regressors,
this paper focuses on multiple breaks and nonstationary factors and regressors. In
line with Bai, Kao and Ng (2009), f; are treated as additional explanatory variables,
instead of an error component in (5). Thus, Ky and K; are considered as multiple
breaks in a linear regression and are estimated by least squares as proposed by Bai
and Perron (1998).

As in the literature on nonstationary panels with factors, the major challenge in
estimating our model (5) lies in the unobserved factors. In this paper, we adopt the
CCE approach proposed by Pesaran (2006) and examined by KPY in the case of
nonstationary factors. To simplify the analysis, we follow Stock and Watson’s (2016,
p.429) idea of using the cross-sectional averages of x;, T; = % ZZ]\LI Ty, instead of

those of 1;; and x;, to proxy for f; in this paper.” The cross-sectional average of x;

"Karavias et al. (2023) use this proxy for f;. BFK (2019) focus on estimating a single break



in (3),

) R | XN
T = F/ft+1_)t7 I'= NZZIFZ and Uy = Nizlvit.
When T is of full rank (¢ < p), like OLS,
fe=(IT)'T(Z; — ). (7)

Since v; — 0 in probability as N — oo, it is also asymptotically valid to use z; as

observable proxies for nonstationary f;,
fi— (T 'T'z, B 0as N — oo. (8)

Hence, the idea of CCE is being used for nonstationary factors in each regime.®

Using (7) for f;, (5) can be written as

yie = oBi(Ko) + fi1:(K1) + €

= 23,(Ko) + [(TT)7'T (& — 0,)]"7(K1) + €t

= Bi(Ko) + 777 (K1) + €5, (9)
where 77 (K;) = I'(TTY) 1y (Ky) and &}, = g —v,1"(TTY)"*;(K4). Thus, by proxying
fr with gf)lservables, equatig)?ll (9) can be regarded as a panel data regression with
multiple common breaks Ky, K in slopes 3; and 7. In the special case of no breaks
K1 in the loadings of model (4), 77(K;) in equation (9) becomes ~; = IV(I'T")~! ;.
In this paper, we consider the general model (5) and use least squares proposed by
Bai and Perron (1998) to estimate break points (Co, K1), slopes ;(Ky) and their
cross-sectional averages.

Remark 1: Breitung and Eickmeier (2011) point out that the structural breaks
in the factor loadings can be captured by inflating the number of factors in the PCA
estimation. However, the inflated number of factors may fail the rank condition
required by the CCE approach above. This implies that using the cross-sectional
averages does not necessarily capture the inflated number of factors. As shown in

the next section, our estimator of Ky and (;(Ky) can be robust to the breaks K in

point in heterogeneous slopes using the cross-sectional average (y;t, x;) to proxy for f; and treat
the error factor structure as nuisance parameters. This paper also estimates break points in error
factor loadings K along with Ky. To simplify the analysis, we use the cross-sectional average ;¢
to proxy for f;. In additional Monte Carlo simulations, we use the cross-sectional average (yit, i)
to proxy for f; and similar results are obtained.

8As in KPY, when the rank condition holds, there is no need to estimate the number of error
factors.



error factor structure in a simultaneous estimation approach. Identifying the breaks
K1 can be separately achieved if the rank condition is satisfied with inflated number

of factors.?

3 Estimation

To simplify notation, let z; = (2,7}, & (Ko, K1) = (8:;(Ko)', 7 (K1)"). Thus,

2px1 2px1
equation (9) above can be written as

Yit = Zzl‘téi(lcm K1) + €5, (10)

We rearrange the mg + m; breaks Ko, K; in time line as {K°} = {Ko, K1} =
{KO K, ..., kO } with m = mg + my. Superscript 0 denotes for true values of breaks.
After reparameterization, model (10) can be considered as a panel data regression

with multiple structural changes in slopes:

Yit :Z;téij+€;<t7t:k??_l‘i‘l,...,k??, (11)

where j =1,....m + 1, and kJ = 0, k9n+1 =T.

Remark 2: Equation (11) can be considered as a panel data version of the
multiple structural change model considered by Bai and Perron (1998) using non-
stationary data. It also extends the stationary panel data model with one common
break in BFK (2016) to the case of multiple common breaks with nonstationary data.

Remark 3: The intuition on identifying break points in this literature apply
here as well. First, as pointed out by Bai (1997) and Bai and Perron (1998), the
key information to identify the break points in time series regressions depend on
the break magnitude and the variance of the regressors relative to the variance of
the errors. Second, in panels with mean shifts or (trend) stationary regressors, Bai
(2010), Kim (2011) and BFK (2016) show that the break magnitude increases with
N under the common break assumption. Thus the break point can be consistently
estimated in panels as (N,7) — oo. Third, Baltagi, Kao and Liu (2017), Pang
Du and Chong (2021) show that using nonstationary regressors, the variance of the
regressors increases with 7', implying that it is easier to identify break points in

regressions using nonstationary regressors than stationary regressors.

9In this case, we can use partitioned regression to consistently estimate Ko and S;;(Ko) first
when the rank condition is satisfied with a small number of factors. After I@o and Bit(/@()) are
obtained, PCA or other methods can be applied to identify the factor structure and the breaks in
loadings in errors f{v;: (K1) + i estimated by y;; — x;tﬁit(léo)‘

8



Define Y; = (yz’h T 7yz'T)/7 0; = ( ,{1, s ;,m+1)/, Zi(/CO) = dzag( il ---,Zi,m+1)
2p(m+1)x1 Tx[2p(m+1)]

with Z;; = (Zz‘,k;?_1+17 ...,ZLk;))/, j=1,...,m+1and e = (e, - ,&). Thus, equa-

tion (11) can be written in matrix form: for i =1,..., N,
Y; = Z;(K°)0; + €] (12)

For possible breaks K = m-partition (ki, ..., k), the OLS estimator of §; is 6;(K) =
(Z,(K)Z,(K)]™" Z,(K)'Y;, and the corresponding sum of squared residuals is

SSR(K) = [V~ Z,(K)5.(K)| [i - 2,00)5:00)]

Thus, the OLS estimator of K° = (k?, ..., kY) is defined as

K= (ki,....kn) = arg kmln ZSSR (13)

Due to the computation complexity O, (7™) of the grid search algorithm, obtain-
ing (l%l, s l%m) by solving (13) is generally very time consuming when m > 3 and T
is large. In practice, we recommend the dynamic programming algorithm proposed
by Bai and Perron (2003).°

In this paper, we assume that m is known. This assumption can be relaxed
by following the idea of sequential estimation based on parameter-consistancy tests
by Bai and Perron (1998). Alternatively, m can be determined by an information
criterion approach with a penalty factor related to m as in Boldea et al. (2020) who

consider a fixed effects panel data model with multiple breaks.

Next, we consider the estimation of 3;(Ky). Denote X; = (21, --,2;r) and
TxXp
T)_( = (%1,---,2r). Stacking the time dimension of equation (9) in matrix form
xp
gives
51 Bin 1V
Y; = : + : +ej
Ty Bismo+1 S
Reparameterizing X;(KCo) = diag (Xin, Xio, -+, Ximo+1) With X1 = (@31, .., %5 k)
T'x[(mo+1)p] Ko,1xp

Xio = (fL‘i,KO,IH, -~-,€Ei,Ko,2)/, oy Ximgr1 = ($i,K0’m0+17 o, yr) and bi =
(Ko,2—Ko,1)xp (T—Ko,mq) XP [(mo+1)p|x1
( @{17 U 76’2,m0+1)/ gives

YVi= X,(Ky) b+ X(Ky) 9 te&, (14)

T x[(mo+1)p][(mo+1)pIx1  Tx[(mi+1)p][(m1+1)p]x1

10Tn the simulations and empirical application, our selection range of breaks is 0.17 < k; < --- <
km < 0.97. To avoid the singularity problem, we also impose the restriction of min; k; — k;j—1 > p
forj=2,---m



where X(K,) = diag((f’l,...,j’Klyl)’,u',(E’I(LmlJrl,...,i’T)’) and ¢ =
Tx[(m1+41)p] [(m1+1)p]x1

(’7;1/7 e 77;,%1-&-1)/'
In equation (14), we focus on the individual slopes b;. Hence, we perform a parti-

tioned regression that removes the second term X,(K;)g;."* This partitioned regres-

sion on equation (14) yields:
e . . . 1
bi = b (Ko, K1) = | X, (o) Mg, X (Ko)| - X (/co) My, Y (15)

where Mz, =1 — X (K1) [X (K1) X (Ky)] ' X(Ky)". Similarly, the mean of b; can

also be estimated consistently by the following mean-group estimator

N N B A
o = 3¢ Do = 5 20 [ M, XK XK e 06

In the case of no breaks in error factors considered in equation (4), equation (14)
reduces to

Y= X,(Ky) b; + X v +el,

Tx[(mo+1)p]l(mo+1)p]x1  T>Ppx1
thus
-1

b= b, (Ko) = [X(Koy M X (K0)| X, (Ko) Mgy,

where My =1 — X ()_( 'X )71 X’ and the corresponding mean-group estimator be-

comes
1 N ~ -1 “ !
N ; [ ICO )M X, (Ko )] X; (’C0> MzY;.

The partitioned regression (15) suggests that the CCE transformed regressors
Mz X (ICO) become stationary after partialling out 7(1) f; in the case of stationary
vi. This leads to v/ T-consistent b- as shown in the next Section. By contrast, when
vy follows an I(1) process, My )X X, (Ko) remains nonstationary. In this case, y;
and x;; are cointegrated after dealing with the unobserved factors in each regime,
and T-consistency of b; can be obtained. This is different from the setup in KPY.

We will consider I(0) vy as Case 1 in Section 4, and I(1) v; as Case 2 in Section 5.

HTf the structural breaks Ky exist in the loadings Ty, i.e., z; = I (K2) fi + vy where IT';(K) is
similarly defined as ~;;(K1). It is still asymptotically valid to use Z; as proxies for the nonstationary
ft- We can simultaneously estimate the breaks (K1, K3) as in Section 3, or we can ignore them if
the focus is on estimating Ky and the slopes, and the rank condition still holds after using a bigger
set of factors to represent breaks in factor loadings. For simplicity, we only consider the case of no
breaks in I'; in this paper.

10



4 Main Results

4.1 Assumptions

The following Assumptions are needed for establishing the asymptotic properties

of the breaks and slope estimators above.

Assumption 1 For j = {1,--- ,m}, kY = [N0T] with 0 < X} <--- <X} < 1.

Assumption 2 Rank(I') = q < p.
Assumption 3 Factor loadings v; (K1) and T'; are independent and identically dis-

tributed (1ID) across i, and independent of €, vy and fi for all i,5,t. Assume
M1 1<t <Ky,
Vi(K1) = (K1) +m = m + : : with n; ~ I1D(0,%,)

’)/m1+17 Km1,1 + 1 < t S T
and vec(I';) = vec(l') + &, & ~ 1I1D(0,Q), @ = 1,...N, where the means (K1), I'

are non-zero and fized and the variances €, l¢ are finite.

Assumption 4 Fori=1,..,N, b, = b+uvy;, v, ~ [1D(0, %), whereb = (ﬁi,ﬁé, e
Upi = (Ulﬂl,wvlﬁz,i’ . -U’B”LO+M)’ and ¥y = diag(Xg,, Xp,, - ’Eﬁmoﬂ) fori=1,2,...,N,
where ||b]| < oo, ||X]] < oo, and the random deviations vy,; are independent of x;

and € for alli,5 and t.

Assumption 5 In the nonstationary factor process f = fi_1 + @i, @i s a vector
of Ly.y bounded process for some ¥ > 0,such that E[||¢||*™] < oo, and
stationary near epoque dependent process of size 1/2, on some a-mizing process of

size —(2+ 1) /9 and independent of vj, and €, for all i,7,t.

Assumption 6 \) = 1/T and for j = {1,--- ,m}, A} € (0,1), and X),,, = 1.

[>\9+1T] N [)‘2+1T]

Matrices %2 g fifl and ﬁ g E Zizly have minimum eigenvalues bounded
—)0 | — —\0
t=[\)T] i=1t=[\0T]

away from zero in probability.

Assumption 7 (i) The disturbances y,i = 1,..., N, are cross-sectionally indepen-
dent; (ii) For each series i, € is independent of @y for all t and t'; (iii) errors €
and vj; are independent for all i,j,s,t; (i) e is a stationary process with abso-
lute summable autocovariances, such that e, =y = auC;r—i, where {(y,t =1,...,T}

are IID random variables with zero mean and have a finite fourth-order moments.

11
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Assume 0 < Var(ey) = Y opay = 07 < 00. (v) for the T x 1 vector &; =

(it €iz, - eir), Var(e;) = B and 0 < ||X. ;|| < oo.

Assumption 8 (i) The disturbances vy,i = 1,..., N, are cross-sectionally indepen-
dent; (ii) For each series i, vy is independent of py for all t and t'; (iii) vy are
linear stationary processes with zero mean and absolute summable autocovariances,
Vit = Y o0 Zi0ig—1, where (i, 0l ) are (p 4+ 1) x 1 wectors of IID random vari-
ables with variance-covariance matriz I,.1 and has a finite fourth-order moments,
and Var(vy) = Y 00 ZaZ = Sy, and 0 < ||Z,4] < oo. (w)}\lfz_v}v;o()% Zf\il Yo s

nonsingular.

For j ={1,--- ,m}, define ¢ ; = Zi]\il(6@j+1 —08;5) (0,541 — 0;;) in equation (11)

as the magnitude of common breaks in panels.
Assumption 9 ¢y ; — 00, Lon,; — 00, as (N, T) — oo for j ={1,---,m}.

Assumption 1 is common in the time series and panel data literature of structural
changes, e.g., Bai (1997), Bai and Perron (1998), Bai (2010), BFK (2016, 2019). It
rules out the case that true breaks happen on the boundary of the observed time
period. It also implies that there are sufficient number of observations between
breaks for large sample approximation. However, Bai (2010) pointed out that the
common breaks close to the boundary are allowed in a panel mean shift model when
T/N — 0. To simplify our proofs, we adopt this convenient assumption. We explore
the performance of our break estimator in the case of boundary breaks in Monte
Carlo experiments.

Assumption 2 on the rank condition guarantees that equation (7) is valid, see
Pesaran (2006) and KPY who discuss the situation of rank deficiency. This as-
sumption can be relaxed to accommodate more empirical situations. For example,
Karabiyik, Urbain and Westerlund (2019) consider the case of p < ¢. When p < ¢,
additional combinations of regressors (Karabiyik, Urbain and Westerlund, 2019) or
additional exogenous variables (Bai and Ng, 2010) should be included to proxy the
unobserved error factors. Karabiyik, Reese and Westerlund (2017) provide a
new analytical framework to address the problem that too many observ-
ables cause the second moment matrix of the estimated factors to become
asymptotically singular. Juodis, Karabiyik and Westerlund (2021) establish the

theory of pooled CCE, while the true number of common factors can be larger than

12



the number of estimated factors. Our theoretical results can be extended to the case
of rank deficiency by following the papers mentioned above. We will explore the per-
formance of the estimators in case that Assumption 2 is not satisfied in the Monte
Carlo simulations.

In Assumption 3, we assume that I'; and 7, are independent, so the regressors
and the error factor loadings are uncorrelated. Different from Pesaran (2006), we use
the cross-section averages of regressors only to proxy the unobserved factors f; in
this paper, thus 7; does not appear in equation (7) above, implying that whether ~;
is correlated with I'; or not does not affect the rank condition. In addition, breaks
Ky in ~; in Assumption 3 will not affect the rank condition as well.

Assumptions 4, 5 on the identification condition for the individual slopes
are borrowed from KPY. Under Assumptions 7 and 8, the idiosyncratic errors
ey and vy follow a general linear stationary process with heteroscedasticity and
autocorrelation for each i. Assumption 9 specifies the relationship between 7'/N and
the magnitude of breaks ¢n;,7 = 1,...,m. ¢n; can grow slower or faster than N,
depending on the relative rate of T'/N. The condition on the magnitude of breaks
in Assumption 9 generalizes Assumption 2 in stationary panels considered by BFK
(2019) to the multiple breaks case.

Under these assumptions, we can show that the multiple breaks are estimated

consistently, as summarized in the following theorem:
Theorem 1 Under Assumptions 1-9, imn 1)—ec P (l%J = k’?) =1,7={1,---,m}.

The rate of convergence and the distribution of the estimated structural breaks in
stationary or nonstationary homogeneous panels have been discussed by Bai (2010),
Baltagi, Kao and Liu (2017) and others. As pointed out by Bai (2010), Theo-
rem 1 implies a degenerate limiting distribution for l%j. To obtain a non-degenerate
distribution, a different framework of shrinking magnitude of breaks is usually as-
sumed. Baltagi, Kao and Liu (2017) show the convergence rates of break estimators
in homogeneous cointegrated panels and stationary panel regression are O,(1/NT)
and O,(1/N), respectively, suggesting the benefit of using observations in the cross-
sectional dimension under the common break assumption in panels. In our model,
similar insights can be carried over. However, when the slopes are heterogeneous,
the derivation of convergence rate and limiting distribution of the break point esti-

mators is technically nontrivial. In addition, as shown in the following proposition,

13



the convergence rate of l%j is not required for the asymptotic distribution of the slope
estimators, so we leave it for future research.

Denote V,(Ko) = diag (Vi1, Viz, -+, Vime+1) With Vii = (vi1, ..., vk, ), Vi =
(Vi Ko 1115 s ViKoa)'s 5 Vimer1 = (ViKgmg+15 -+ Vir)’. Given the consistency of es-
timated structural breaks K above, we can obtain consistent estimators of the slope

parameters.

Proposition 1 Under Assumptions 1-9, as (N,T) — oo, and ‘/TT — 0, for
eachi={1,--- N},

VT (132- - bi> 5 N (0,97 0xei DY)
where Yx; = plimr_oo 1V (Ko)'V;(Ko) and Sx; = plimvr—oo 7 V,;(Ko) Ee iV, (Ko)"

According to Lemma 6 in the Appendix, Y¥x, can be estimated by
11X, (Ko)' M (1) X(Ko), which can be easily computed when Ky and K; are replaced
with their least squares estimates. It has a well-behaved probability limit when
T — oo. Similarly, as in Pesaran (2006), KPY and BFK, a consistent Newey-West

type estimator of ¥ x.; can be obtained as

iXs,i = /A\io+z (1 — %—1—1) (A + A/ ) A Z €it€i—j X ’CUJCl) (Ieo,’él)/,
j=1 T2 j+1

(17)

where w is the window size, t™" element of e; = Mz Yi— Mz )X (Ko)bi

and X l@o, I@l is the t"* row of M~ ¢ X f(o . Thus, a consistent Newey-West type
it X(K1)==t

12 6., is the

estimator of E)_(’IZE xeiXyy is given by

1o, AN P B RPN 217
XK M XK B | XK M XKo)| - 1)

Proposition 2 Under Assumptions 1-9, and (N,T) — oo,
VN (bug = b) 4 N (0,%),
where Y, can be consistently estimated by

TN NN
= N (b —b ><bi—b )
N—121< MG MG

12Tn practice, the selection of the window size w is important. Pesaran and Timmermann (2007)
propose the cross-validation methods for selection of a single estimation window in the presence of
breaks.
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This result suggests that Theorem 1 in KPY (2011) holds as if Ky and K; were

treated as known. Similarly, a pooled estimator

—1 N

Z ( ) oY (19)

can be defined as in equation (20) in KPY (2011)."3

bp = ZX M X, (Ko)

5 Additional Nonstationary Components in the
Regressors

In this section, our analysis of nonstationary panels is extended to the case of both
nonstationary f; and vy. Idiosyncratic errors e, remain I(0). Compared with Section
5 of Phillips and Moon (1999), our model accommodates additional features of an
error factor structure and multiple breaks in slopes. In equation (3) x;; = L' fi + vy,

errors vy follow I(1) processes:
Uit:Ui,t—1+§ita 1= 17"7Na (20)
where ¢;; follows the assumption below:

Assumption 10 ¢, ¢« = 1,..., N, are cross-sectionally independent. For each 1,
(i) si = Vi(L)ey with ey is IID random variables with zero mean and has a finite
fourth-order moments; (ii) Var(ex) = Xc; = PP, and V(L) = Y72 VL7 with
> icod W]l < oo, and V(1) = 5 72, Wy

Different from Case 1 of stationary v; considered in Section 4, in Case 2 of
I(1) v;, the CCE transformed regressors in the partitioned regression (15) remain
nonstationary. We will show that K defined in equation (13) above are still consistent
and I;Z is T-consistent. In addition, different from Case 1, the restriction on the

relative diverging rate between 7" and N in Assumption 9 is not required here.

131ts limiting distribution can be proved in line with Theorem 2 of KPY:
\/N(BP fb) 4 N(0,Zp).

Xp can be estimated consistently by Yp — U1 pj—1 where R _
_ ~ / “ N

o [ K] () o ) [0t K]
v = ﬁ Zi:l X@'(KO),MK(}CI)XZ-(K()).
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Theorem 2 Under Assumptions 1-8, 10, as (N, T) — oo, lim(n 1)—e P (/%] = k?) =
17j = {17 e 7m}'

With an additional Assumptions 11 and 12 on ¢, and identifying b; below, respec-
tively, we obtain the following Proposition 3. In line with equation (5.8) in Phillips
and Moon (1999) in nonstationary heterogeneous panels without structural breaks

and error factors, for each i = 1, ..., N, b; is also super consistent in our model.

Assumption 11 ; is linear stationary process, (i) ¢ = I(L)u; with p, t =
1,....,T, have a finite fourth-order moments; (it) Var(u;) = X, = QQ’, and II(L) =
Do L7 with 3272 5 ||| < oo, and TI(1) = 3772, T1;.

Assumption 12 %Xi(ICO)’MX(Kl)Xi(lCO) is non-singular, and its inverse has a fi-
nite second-order moment.

~

Proposition 3 Under Assumptions 1-7, 9-12, for each i, T'(b;—b;) converges weakly

to a non-degenerate distribution, as (N,T) — oc.

Intercept estimator is not included in b, above, and its convergence rate is V1’
as in a cointegration model (Hamilton, 1994, p.588). The intercept can be wiped
out by adding a vector of ones to X (K;) in the Mz ,)- The limiting distribution
of T(b; — b;) is complicated and inconvenient in practice. It is of a similar form to
Theorem 8 of Phillips and Moon (1999) and is reported in Appendix A.

In empirical applications of heterogeneous panels, the cross-section means of b;
are usually of interest, thus a popular estimator is either the mean-group estimator

or the pooled estimator. For the mean group estimator of b,

. 1 & -
\/N (bMG — b) = _N ZU@H‘W Z
=1

i=1

1
T

(21)

The second term is O,(1/T"), dominated by the first term in the equation above.

Thus, we can obtain a similar result to Proposition 2 in Case 1: v N (I;MG — b) a4
N (0,%,) as (N,T) — oo.

In a special case of homogeneous slopes b, = b with v,; = 0, the first term in

equation (21) disappears. Thus, equation (21) reduces to

WT(BMG—b) :V%i
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The convergence rate of buc in a homogeneous panel becomes vV NT, same as in Bai,
Kao and Ng (2009) and Huang et al. (2020).
We obtain the following Proposition 4.

Proposition 4 Under Assumptions 1-7, 9 and 10-12, in a homogeneous panel with
b; =5, as (N,T) — o

VNT (BMG - b) 4N (0, She),
where
zMG:];gnooﬁij[ X, (o) Mgy X (Ko)) ™ (77, (o) Mg 1)
(T Mg X, 0 ) (T X, 060 Moy 0.

More details can be found in Appendix A.4. For simplicity, the asymptotic bias
mentioned in Theorem 8 of Phillips and Moon (1999) and Proposition 1 of Bai, Ng
and Kao (2009) disappears here under the assumptions of no serial/ cross-sectional

correlation and heteroskedasticity. ;¢ can be estimated consistently by

-1
/ c 1 A
EMG TN Z (TZ—Z MX(/&l)Xi(’CO)) (T—Z(’CO) X(Kl)s)

(Mg X0 ) (oo Mg X, <;@0>>‘1] |

where & = Y; — X, (Ko)buc.

6 Monte Carlo Simulations

In this section, Monte Carlo experiments are conducted to examine the finite
sample properties of the break estimators. We consider the case of three breaks, i.e.,
m = 3, including two common breaks in slopes (¥, £9) and a third one in error factor
loadings k9 in various scenarios. We find supporting results to the main findings in
Theorems 1 and 2. This is done by looking at the frequency of choosing true breaks
using the proposed break estimators. For nonstationary panels, nonstationarity could
come from either f; or v; or both under the common factor assumption (3). Thus,
we consider six different scenarios: i) Case 1 with I(1) factors f; and I(0) vy; ii)
Case 1 under rank deficiency; iii) Case 2 with I(1) f; and I(1) vy; iv) Case 2 with
I(0) fy and I(1) vy; v) Case 2 with I(1) errors g;; vi) Case 1 with mixed stationary

and nonstationary regressors and factors.
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6.1 Data Generating Process

Our basic design is similar to the one used in KPY but now with multiple breaks:
Yir = Oy + B@ (k’?, k’g) Ti + M,i (k’g) ft + i, 1= 1, ceey N; t= 1, ceey T, (23)

where a; ~ 1idN(1,1). The scalar regressor x;; is affected by the common correlated

effect f;:
Tit = a; + Vo0 ft + Vit (24)

with a; ~ idN(0.5,0.5) and v5; ~ #dN(0.5,0.5). The scalar factor f; follows an
I(1) process:
ft = ft—l + Uftvt = _497 e Oa ]-7 7T7

where f_50 =0, vp ~ itdN(0,1).
Two common breaks £, k9 in slopes are assumed at [0.37] and [0.57] of the time

span:
Bi, t=1,..., kY,
Bk k) =4 Bi+AB, t=k+1,..,T,
Bi +2AB;, t=k34+1,...,T

where 3; ~ 1dN(1,0.04) and AB; ~ iidN(0,0.5). A third break £ = [0.77] occurs
in the error factor loadings:

(1.0 71,1'7 t= 1, ...,k}g,
71,7,(]{:3) - { ’yl,i -+ Afy“ t = kg + ]_, ...7T, (25)

where 71 ; ~ itdN(1,0.2) and Avy; ~ iidN(0.5,0.5).

In scenario (i) of Case 1, as in KPY, both ¢;; and v;; are stationary. ;s = pjc€ir—1+
oi (1 — p2) 2wy, for i = 1,2, ..., [N/2] and e = o; (14 62)*° (wy + O;cwis—1), for
i=[N/2] +1,..,N, with w;; ~ itdN(0,1),0? ~ iidU[0.5,1.5], p;e = 11dU[0.05,0.95]
and ;. ~ 4dU|[0,1]. Similarly, vy = pyivii—1 + Y, Yy ~ WdN(0,1 — p%), with
v —19 = 0, and p,; ~ 4dU|[0.05,0.95].*

In scenario (ii), we consider the importance of rank deficiency in finite samples.
The DGP here is the same as above, except that the means of a; and ~,,; change to
zero, i.e., a; ~ 1idN(0,0.5) and ~vo; ~ 7dN(0,0.5) in equation (24). In the current
design, the rank condition is not satisfied asymptotically.

In scenario (iii) of Case 2, both v;; and g;; follow I(1) processes,

Vit = V-1 + wita ¢it ~ ZZdN(O, 1), t= —49, ...,O, 1, ,T

14In this design, the signal-to-noise ratio is about 1.5.
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We also allow for 7(0) f; in the design above in scenario (iv). In addition, in scenario
(v), we examine the impact of nonstationary errors on break point estimators, we
also consider Case 2 with nonstationary errors, i.e., I(1) i, €it = €i4—1 + Vit, Vir ~
1idN(0,1), t = —49,...,0,1,....T.

Finally, in scenario (vi), we also consider the case of mixed stationary and non-
stationary regressors and factors. To allow for a stationary regression, we add an

additional regressor and factor in the regression (23) above. More specifically,

Yit = a; + B (k‘?) T1t + B (k'S) T2t + M1, (k?g) Jie + M2 (k;?) Jot + €it,
where both regressors are generated by
T1ie = @ + Y210 f1e + Vo2 for + V1t
Toir = a; + 0 f10+ Y23, for + Vot

We assume that both vy, and vy are 1(0) as v;; in Case 1 above. Two factors fi,

and fo, are generated as I(1) and 1(0) processes, respectively, as follows:

fie = fre—1 +vip, and fo, = 0.5f2 1 + va pi.

Thus, x1 ;4 1s (1) and x4, is 1(0). Same as yo;, loadings y21.4, Y224, V23, ~ 10dN(0.5,0.5).
The break points kY = [0.3T], k9 = [0.5T] appear in the slopes:

o Biti, t=1,.., kY,

Bri (kD) { Biii+ABrs, t=k+1,..T,
(10) Ba1is t=1,..k,

Boi (k3) = { Bori 4+ ABas, t=k+1,...T,

where ABy 4, ABy; ~ 19dN(0,0.16). Here v11; (k9) and 12, (k9) have the same design
as 71 (k9) in (25) but the variance of Av; changes from 0.5 to 0.16.

Different combinations of T = 20, 50,100 and N = 10, 50, 200 are considered in
the Monte Carlo experiments with 1,000 replications. Due to limited space, only the

results with 7" = 50 are reported in the paper.

6.2 Results

Figure 1 presents the histograms of estimators (12:1, 1%2, /%3) in Case 1 with nonsta-
tionary factors for T' = 50. The true values of the break points are k¥ = 15, k9 = 25,
kS = 35. In each replication, a dynamic programming algorithm proposed by Bai

and Perron (2003) is applied to obtain l%l, ];’2, IA€3 simultaneously. The upper, middle
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and lower panels represent the empirical distributions of /2:1, ko and ks, respectively.
Figure 1 shows that the frequencies of choosing (k?, kY, k9) increase substantially as
N increases from 10 to 200. For example, the probability of choosing k? increases
from 36% for N = 10 to 69% for N = 200. This finding supports the results in
Theorem 1.

Figure 2 reports the histograms of (l%l, ks, 1%3) in Case 1 for T' = 50 under rank
deficiency. The rank condition is required for the validity of the CCE approach to deal
with unobserved common factors. We examine the finite sample properties of these
break estimators when the rank condition is not satisfied asymptotically. Although
the probabilities of choosing the true break points are smaller than those in Figure
1, they still increase substantially with /N, showing that under rank deficiency, the
estimators (ky, ko, k3) are still very informative about choosing (k?, k9, k9) when N
is large.

In Figure 3, we consider Case 2 with nonstationary regressors and both f; and
vy are nonstationary in x;. Similar patterns as in Figure 1 are observed. The
probabilities of choosing true break dates increase with N, e.g., nearly 100% for
choosing k¥ by ki for N = 200 and T = 50. This finding supports the consistency
of the break estimators in Theorem 2. In Figure 4, we also consider a scenario of an
I(0) f; and I(1) v in Case 2, where f, = 0.5f,_1 + vy and vy ~ i@dN(0,0.75). As
expected, as long as x;; is still 1(1), 1%1, /%2, /%3 are consistent. Little impact is spotted
from changing f; from (1) to 7(0) in Figure 4.

In Figure 5, we consider the scenario of nonstationary errors ; in the design of
Case 2 above. Under the current design, f;, vy and e;; follow I(1) processes. Different
from Case 2, I(1) &;; could lead to a spurious regression and thus, the least squares
estimators of slopes could be inconsistent. In addition, nonstationary ¢;; could lead
to a smaller signal-to-noise ratio in the DGP of Figure 5 than that of Figure 3 with
I(0) &;. Thus, we observe smaller probabilities of choosing (k¥ k9, kJ) here, even
though the same pattern remains. That is, big N helps to date the break points.

Lastly, we examine the scenario of mixed stationary and nonstationary regressors
in Figure 6, as in Bai, Kao and Ng (2009), Huang, Jin, Phillips, Su (2021). Slightly
different from the designs used in Figures 1-4, an additional regressor and factor are
added to the design (23). In our modified design, given an I(1) fi; and an I(0)
fat, T1t, T2 are I(1) and I(0),respectively. We consider I(0) v;; in this scenario

to avoid potential spurious regression after fi; and f,; are partialled out from the
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regressors and ;. As expected, the frequency of choosing k9, the break point in
the stationary regressors, is smaller than that of choosing & under the same design
parameters for a same N. After scaling up the magnitude of the break in (s, (k9),
we find a similar pattern as in Figure 1, still observing increasing probabilities of
dating the true break points with /N in the histograms of l;:l, 1%2, ks.

Moreover, we also conduct additional robustness checks, including using (y.¢, .4)
instead of z;., to proxy f;, boundary breaks, fixed effects model, different magnitude
of breaks in slopes and factor loadings, adding a time trend etc. These results can be
found in Figures A1-A6 in the supplementary Appendix B. The results with T' = 20
and 100 are in line with those with T" = 50 reported above, and are available upon

request from the authors.
[Insert Figures 1-6 Here]

Finally, we examine the finite sample properties of the slope estimators in Case 1.
Table 1 reports the root mean squared error (RMSE) and bias of by = % SOV bi(ky,
ks, ks) defined in (16) under the design described in Figure 1. The size of the ¢ test
is also included. The results show that the RMSE as well as bias decrease notably
with (N, T'), in line with the simulation results in KPY.

7 Application: International R&D Spillovers

In this section, we apply our approach to an empirical example of international
R&D spillovers, which was studied by Coe and Helpman (1995) and Coe, Help-
man, Hoffmaister (2009, CHH hereafter). Huang et al. (2021) find a latent group
structure in the long-run relationship between technological change, domestic R&D
stock, foreign R&D stock for 24 OECD countries during 1971-2004. Different from
CHH (2009) and Huang et al. (2021) who emphasize heterogeneous in-
ternational R&D spillovers in different countries, we focus on the hetero-
geneous effects in different time periods along with the changing global
economic conditions.

As pointed out by Coe et al. (2009), the total factor productivity (TFP) and
domestic R&D stock accelerated after 1990 for some countries. To accommodate
this pattern, we allow common breaks in their long-run relationships. We follow the

specification considered by Huang et al. (2021, model (5.1)),
log(y:) = A7 (7) log(si) + B] (7) log(sh) + 1if + e, (26)
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where y;; is the TFP in country i in year ¢. s& and slft are real domestic and foreign
R&D capital stocks, respectively. 8% (k%) and 8/ (k9) represent heterogeneous effects
of domestic and foreign R&D stocks on the TFP. We allow a common break k) in
the slopes. Detailed data information is provided by Coe et al. (2009) and Huang et
al. (2021), who found a single nonstationary common factor in the data. Here, we
also assume an I(1) factor f;.

Table 2 columns (1) and (2) include the dynamic OLS estimates of
CHH (2009) and pooled FM-OLS by Huang et al. (2021, Table 7) without
considering a latent group structure in the slopes for comparison. Using
the cross-sectional averages of log(s¢%) and log(s/,) to proxy the unobserved
common factor, we estimate the common break and slopes in (26) with
the least squares estimation method proposed in Section 3. There are
two key findings in our estimation results. First, we find that there is a
common break in the slopes in 1992.'° It splits the sample period into two
regimes, 1971-1992 and 1993-2004, and the estimation results in these two
sample periods are reported in columns (3) and (4), respectively. Second,
the coefficients of log(s%) and log(s/,) are significantly different in these two
periods, with a doubling effect of foreign R&D spillovers during 1993-
2004. 16

The doubling effect of foreign R&D spillovers suggests that international
technology diffusion via importing foreign R&D plays a more important
role in boosting domestic productivity growth than domestic R&D in the
OECD countries, and this effect is more pronounced starting from 1993.
Following the German reunification in October 1990, the collapse of the
former Soviet Union in Decomember 1991, and more importantly, the
formal establishment of the European Union in 1993, globalization accel-
erated in the early 1990s. According to the well cited KOF Globalisation
Index, the world overall index sped up starting from 1991. 7

In a globalized economy, R&D activities concentrate in a few rich

countries. For example, Keller (2004) documented that 84 percent of

15The CUSUM test of common breaks proposed by Jiang and Kurozumi (2023)
suggests that there is one comon break in the data.

6When there are two common breaks, our second estimated break date occurs in 1976. The
second break of 1976 splits the period 1971-1992 into two sub-regimes.

1"The KOF Globalisation Index is provided by KOF Swiss Economic Institute at ETH Zurich.
The link: https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalisation-index.html
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Table 2: Structural Change In International R&D Spillover

Dependent Variable: Total Factor Productivity

Periods 1971-2004 | 1971-2004 | 1971-1992 | 1993-2004

Columns (1) (2) (3) (4)

Methods CHH2009 | FM-OLS CCEMG CCEMG

log(s%) 0.095%#* 0.099%#* 0.084*#* 0.098%##*
(0.005) (0.027) (0.005) (0.005)

log(slft) 0.213%** 0.121%** 0.123%** 0.251%%*
(0.014) (0.044) (0.035) (0.054)

Note: (1) Standard errors are reported in parentheses. (2) The stars, *, ** and ***
indicate the significance level at 10%, 5% and 1%, respectively.

the world’s R&D spending was contributed by the G-7 countries in 1995.
With more free trade and foreign direct investment, small and developing
economies depend more on foreign technologies than domestic R&D in
their productivity growth. According to Keller (2004), “for most coun-
tries, foreign sources of technology account for 90 percent or more of

b

domestic productivity growth. Our estimates in columns (3) and (4)

indicate that this is also the case for OECD countries.

8 Conclusion

This paper proposes the estimation of unknown multiple structural breaks both
in slopes and factor loadings in nonstationary panels with common factors. Based
on KPY’s approach for dealing with nonstationary factors in panels, we extend Bai
and Perron’s least squares estimator for multiple breaks in time series regression to
nonstationary heterogeneous panels with unobserved factors in errors. We show that
the proposed estimators, including the estimated structural breaks and slopes, are
consistent in both cases of nonstationary factors and nonstationary regressors. These
main findings are supported by the Monte Carlo simulations.

There are potentially two important issues to explore in the current framework.
One is testing for multiple structural changes in nonstationary panels. In this paper,
we only assume multiple breaks in slopes and factor loadings and estimate these
break points. It would be meaningful to test the existence of the breaks in many
empirical studies before applying our estimation methods. A candidate is to extend
Bai and Perron’s (1998) supF or double maximum tests into nonstationary panels.

Another important issue is related to sequential estimation of the break points. In
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this paper, we estimate multiple breaks simultaneously. In the case of mixed sta-
tionary and nonstationary factors and regressors as considered in Figures 4 and 5, it
would matter a lot whether breaks are estimated simultaneously or sequentially. It
would be interesting to explore the asymptotic properties of sequential estimation of
multiple breaks as in Bai and Perron (1998) and Pang, Du and Chong (2021). We

leave these research questions for future research.
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Supplementary Appendices: Proofs of Theorems and

Lemmas (not for publication)

Nonstationary Heterogeneous Panels with Multiple
Structural Changes

by Badi H. Baltagi, Qu Feng, Wei Wang

The supplementary appendices include detailed proofs of the main results in the
text. To simplify notation, in this section we consider the case of three breaks, m = 3,
including two in the slopes, (k{,%9), and one in the error factor loadings, kS. The
proofs of the general case in model (10) can be presented at the cost of additional
notation.

Specifically, Appendix A includes detailed proofs of Theorems 1 and 2, Proposi-
tions sub-regimes1-4. Subsection A.1 provides necessary Lemmas and detailed proof
of Theorem 1. Similarly, subsection A.2 provides necessary lemmas and proof of
Theorem 2. Lastly, Subsection A.3 provides proofs of Propositions 1- 2, and A.4
provides proofs of Propositions 3-4 respectively. Detailed proofs of lemmas are col-
lected in the supplementary Appendix B. Additional figures of simulations are also
attached in the last.

Appendix A: Proofs of Theorems and Propositions
A.1 Proof of Theorem 1

Proof of Theorem 1.

Following Bai and Perron (1998), we decompose the analysis of multiple breaks
into several problems involving a single structural change in each. Without loss of
generality, we only provide the proof of lim y 7)o P(l%l = k?) = 1. The proof of
limn 7)o P(/%j = k9) =1, j = 2,3, can be shown similarly and is omitted.

To show k; — K9 20, it is equivalent to show that for any given e > 0, for both
large T and N, P(|k; — k9| > 1) < e. As in BFK (2016), we assume that k5 — &,
ko — k9 and ks — k9 are bounded here for simplicity.8

Under Assumption 1 and that the estimators of break fractions are consistent,

we consider the set K (Cy) = {(k1, ko, k3) : 1 < [ky — k9, [k; — kY| < Gy, aT < k; <

18With an observed proxy for f;, each series is considered a time series model with multiple breaks.
Based on Bai and Perron’s (1998) finding, here we assume that estimated breaks are bounded.

1



(1—a)T,j=1,2,3} for a finite constant C} and a > 0. By definition, S(ky, ko, k3) =
SN SSR;(ky, kg, ks) is minimized globally at (ky, ks, k3), i.e., S(ky, ko, ks) < S(k, ky, ks)
with probability 1.

Therefore, we examine the behavior of S(ky, ko, k3) on the set K(Cy). It is suffi-
cient to show that for each € > 0, for both large 7" and N, P(ming c,)[S(k1, k2, k3) —
S(kY, ko, k3)] < 0) < e. Without loss of generality, assume ky < k9 < ko,

S(ky, ko, ks) — S(kY, ko, ks)
=[S (K1, ko, ks) — Sk, kg, ko, k3)] — [S(RY, ko, k) — Sk, kY, kas Bs)l. (27)
=SV [SSRi(k1, ko, k3) — SSRi(ky, kY, ko, k3)]

— SN [SSRi(KY, ko, ks) — SSRi(ki, kD, ko, k3)]

where, SSR;(ky, kY, ko, k3) is the sum of squared residuals in the regression with four
breaks at (ki, kY, ko, k3) for series i and S(ky, kY, ko, k3) = Zfil SSR;(ky, kY, ks, k3).
Thus, the analysis of a three-break or multiple break problem can be decomposed into
two problems involving a single break. The first term SSR;(ky, ko, k3)—SSR; (ky1, kY, ko, k3)
allows an additional fourth break kY between k; and k,, and the second term SSR;(k?, ko, k3)—
SSR;(ky, kY, ke, k3) adds an additional fourth break at k; between 1 and kY. Thus,
it is convenient to derive each part above as a single common break issue in panel
data as in BFK (2016).

Following Bai and Perron (1998), we denote &;(ky, ka, k) = (321,52’-2,&3,5;4>/
the estimator of (0;1, d;0,0;3,ds4) in the regression with three breaks ki, ko and ks,
and (07, 0in, 05, 0%, 0%) the estimator of (01,01, 82, 63, 0;4) based on the partition
(ki, kY, ko, k3). In particular, 5;*1 is an estimate of §;; associated with regres-
SOT (Zi1y +vs Zikys 0, .oy 0) dia is the estimate of §;; associated with regressor Zian =
(0,0, 0, Zi ey 415 -5 Zi 05 0, s 0)’, and 5;‘2 is the estimate of ;5 associated with regressor
(00,0, 24041, -ovs i, 0, .., 0)'. 8%, 07, can be defined similarly.

By definition,

K s ko o
SSR;(k1, ko, ks) = Z (yit — Z;t5i1> + Yit — Z£t5i2>
t=1 t=k1+1
ks N2 T N2
+ Z (yit — Z;tai?)) + Z <yit - z1t514) ;
t=ko+1 t=k3z+1



and

k1 N2 K L\2
SSR;i(ki, k& ko ks) = Z (yz’t - 27/;155;1) + Z <yit - thfsm)
t=1 t=k1+1
ko ks T

N2 N2 N2
+ Z <yit—zz{t6:2> + Z <yit—2z/‘t(5:3) + Z (yit—zgt6:4> :

t=k9+1 t=ko+1 t=k3+1

It’s worth noting that &, and 52‘1 are the estimators associated with same regressor

Zits s Zikrs 0, ..., 0), thus, &1 = 6% Similarly, d;3 = 0%, 61 = 07,. Thus,
K1 21 i3 i4

SSR;(ki, ko, k3) — SSRi(ky, kY, ka, k3) (28)
ks k3 ka
= Z (yit - Z£t5i2>2 - Z <yit - Z&&'Af + Z <yit - Zzl-tgjz)z
t=k1+1 t=k1+1 t=k0+1

Since the term SSR;(ki, ko, k3) — SSR;(ky, kY, ko, k3) involves a regression with a
break kY between k; and ks, we focus on the interval [ky + 1, ko]. kY splits [ky + 1, ko]
into two parts [k; + 1, kY] and [k? + 1, ko). These three intervals are referred to as %,
A and % — A, respectively, i.e., % = [A, % — A]. Under the current assumptions,
the number of observations on interval A is finite, different from that on % or
* —A. Define Yie = (Yiky+1, - Yiks)'s Yia = (Yiky+15 o Yk, 0, ey 0) and Yj(x—a) =
Yix — Yia = (0, ey 0, Yi k041, s Yika)' - Zikr €iger Zins Zike—n) can be defined in the
same fashion. By construction, Y/ Yjx—a) = 0 and Zj\ Z;x—a) = 0.

Recall that the OLS estimators of (0;1, d;2) on intervals of [k;+1, k9] and [k9+1, ko
are &»A, 5;‘2, respectively. Without considering a break in slopes on the interval [k; +
1, k5], the OLS estimator for d;o is 0. The first term in (28), fi;ﬂH(yit — Z;t5i2)2 =
[Yix — Z,;*&-g]’ [Yix — Zi*&-g] is the sum of squared residuals in the regression of y on
z for series i using time series sample on the interval [k + 1, ks]. The second term

in equation (28)
k9 2 k -
t;k1+1(yit - Zz"t‘SiA)Q + Ztik?Jrl(yit - Z£t5i2)2
k0 5 k : A -
= Zt;kl—i—l(yit - Z;t‘SiA)Q + Ztik9+1(?/it — 2;0in + 2 (in — 5¢2>)2
= [Vige — ZiseOin — Zigx-) (07 — 0ia)]' [Viae — Zinein — Zi—0)(63 — i)

is the sum of squared residuals in the regression of y on z for series ¢ with a break

k9 on the interval [k + 1, ky]. Thus, according to Amemiya (1985, p. 31),

SSR;(ky, ko, ks) — SSRi(ky, kY, ko ks) = (0 — SiA)/ZZ{(*_A)MZi*Zi(*_A)(3:2 N
= (6% = 6ia) Zia M, Zin (5, — bia)-



The second equality above is due to the facts of Zjx—a) = Zix — Zia and

Z,(*_A) MZi* ZZ(*—A) - Z{AMZZ'* ZiA7

(2 (3

where MZZ-* = Iszkﬂrl — Z,L'* (ZZ/*Z,L*) Zz/* and [(kg—kl—‘rl) is the (kg - kl + 1) X (kg —
ki1 + 1) identity matrix. Next, following BFK (2016) we derive the expression of
SSR;(ky, ko, ks) — SSR;(k, kY, ko, k3).

Fort € [ki+1, k), dia = (ZinZin) "' ZjpYia and 03, = (Zige—ny Zith-0)) " Z( g p)Yik-1)

1

for t € [k} + 1, ko]. Partitioned regression gives

0jg — Oin = (Zz{(*—A)MZi*Zi(*—A))_lzZ{(*_A)MZi*}/;*
= —(ZiaMz,, Zin) " ZinMz,, Yik-

Plugging Yix = Zix0i1 + Zi(x—n) (0i2 — 0i1) + €74 into the equation above gives,

- N -1
0y — 0in = (0i2 = 0i1) + (Ziige—ayMziy Zitk—n))

= (bi2 —0i1) — (Zz{AMZz'*ZiA)_l

Zij-nyMz el (29)

! *
ZinMz,, €ig
Thus, we can get

SSRi(ko, k1) — SSRi(ko, kg, k1) = (02 — &)’ ZianMz,, Zin (0i2 — 1) (30)
—2 ((512 — 5“), ZZ{AMZi*E’?*
el My, Zin (ZiaMy,, Zin) ™ ZiaMy,, €he-

1

Similarly, the second term SSR;(kY, ko, k3) — SSRi(k1, kY, ko, k3) in (27) involves
a regression with a break at k; between 1 and kY. Denote the interval [1, k] by ¢.
ky splits [1, kY] into two parts [1, k] and [k; + 1,kY]. Note that the latter interval
has been denoted as A above. Similarly, define Yo = (i1, .-, Yix0)'s Zio and €}, on
the interval ¢). The number of observations on the interval ¢ is unbounded under
Assumption 1 as T — oco. Note that there is no true break in slopes on the interval
[1,k9] and the corresponding true slope parameter is §;;. The OLS estimators of
(8;1,0,1) on intervals of [1, k] and [k + 1, k9] are 87, 0;a, respectively. As in equation

(27), we can obtain
SSR;(KY, ko, k) — SSRi(k1, kY, ko, ks) = (0;a — 05 Zia My, Zin(din — 03).

Partitioned regression gives din — 5;"1 = (Z(AMZiOZiA)_IZfAMZino, where My, =

(2

Tho — Zio(Zgon)_lZ{O. Plugging Yy = Zi(0i1 + €}, into the equation above gives
din — 01y = (ZiaMz,y Zin) " Zin Mz, €5y (31)

4



Since there is no break in slopes on the interval [1, kY], no slope shift term appears

n (31), which is different from (29). Thus, we can get

SSRZUC?,]CQ,]{?;;) — SSRi(kl,k‘?,kQ,k}g) = 5;'K</>MZZ~<>Z¢A<ZAMZ<>ZZA) IZA]\4Z1<> z<>

(32)
Combining equations (30) and (32), we obtain,

S(k1, ko, ks) — S(k}?, ko, k3)
= o [Silkr, ko ks) — Si(kr, kY, ko k)] — Soimy [Si(KY, ko kes) — S, kY, Ko, Kes)]
= L (02— 6i1) ZiaMz,y Zin (5i2 — 0i) — 2301 (Gia — 6i1)' Zia Mz, €3y

AN e My, Zin (ZiaMy,, Zin) ™' ZiaMy, <ty

_Zz’]\ilg%MZioZiA (Zz(AMZioZiA)_l Z/AMZZQ €0+

Like in Bai (1997) and BFK (2016), here S(ky, ko, k3) — S(kY, ko, k3) can be ex-
pressed as the sum of a deterministic part Zfil J1i(k1, ko, k3) and a stochastic term
- Zf\il JQi(kla ks, kS), where Ju(kb k, kz) = (51'2 0; ) Z/AMZ Z; (51‘2 - 51‘1),

Jai(ky, ko, ks) = [2(8i2 — 601) Zia Mz, €5x] — (e Mz Zin(Zia Mz, Zin) "' Zin Mz, €1]

+ [5?</>MZi<> ZiA<Z{AMZi<> ZiA)ilzz(AMng:O]'

)

Thus, S(ki, ko, k3) — S(KY, ko, k3) = sz\il Jri(kq, ko, kg) — Zf\il Joi (K1, ko, ks3).
To prove Theorem 1 and the statement P(ming c,)[S(k1, k2, ks) — S(kY, ko, k)] <
0) < e for both large T" and N, it suffices to show

1 . 1
P(Supx(ck)!fZLJ%(kh ka, k)| > lan(Ck)TZi]\il‘]U(kb ko, ks)) <e. (33)

Consider the term %ZfAMZi*ZiA in Jy;(ki, ko, k3). Since Zig = Zin + Zitx—n)

and ZiA/Zi(*—A) =0,
T ' Z\Mz,, Zin =T ' ZInZin — T " ZinZige(Zig Zin) " Zly Zin
=T ' ZNZin — T ZNZin(T 2 Zige) T ' ZInZin.

Note that the numbers of observations on the intervals of % and A are &y, — k7 and
k) — k1. On the set K(C}), kY — k; is finite, while ky — & is unbounded as T' — oco.
By Lemma 1(i),+Z/xZin = Oy(1) and 75 ZixZin(7: 213 Zix) ' 7 ZinZin = 0p(1) on
K(Cy), thus, T~ 1Z’A]WZ Zin =T ZIxZin + 0,(1). Last,
. ) 1
infx Ck)TZz Vi, ko, ks) = inf o) Yoiy (612 — 0n)’ (fZZ{AZzA) (6ia — 0ia) +o0,(1).

5



Under Assumption 6, let a finite 9, > 0 be the minimum eigenvalue of + SN (+ZInZin)
uniformly on K (Cy). Following the proof of Lemma 1 in BFK’s (2016) appendix, we
obtain
inf gk C,C)TZZ (ks ko kg) > 0min®ni,
with probability tending to 1 and ¢y = Zf\;l(&;g — 01) (d;2 — 041). Thus, from

equation (33), to prove Theorem 1, it is sufficient to show

P(sup o,w (L1 i Ko, hs)| > omin) < € (34)

By Lemma 2,

IS Jailkr, ko ks)| <300 [2(00 — 611)' Zia Mz, y 3|
+|Z¢N—1[5y Mz, Zin(ZiaMz,y Zin) " ZiaMz €55 ]|
Y V€M, Zin(ZinMz, Zin) ™ Zia Mg, €50
= 0T ”2>+0< N).

Thus, T<i> ZZ | Joi(k1, k2, ks)| = O (W) + O ( —). Under Assumption 9

that m — 0, as (N,T) — oo, the term T¢N,1 |J2(k1,k2,k3)| vanishes for any
(k1, k2, k) € K(Cy). Therefore, (34) and then Theorem 1 are established.

The following Lemmas 1 and 2 are needed to prove Theorem 1.

Lemma 1 Under Assumptions 1-5, 7,8, and uniformly over K (Cy) , as (N,T) —
oo, fori=1,..., N,

(i) 7ZinZin = Op (1), 75 ZixZix = O, (1);

(i) \/% Zineix = =Zincia = 0p (1), 1Z038ix = Oy (1);

(iii) — TFZinEio = LZ{AQA =0, (1), 7Zlci0 = O, (1);

(i0) Vi Vi = Oy (%), =Z\Va =0, <f) 170 Vi =0, (ﬁ)
Lemma 2 Under Assumptions 1-8, uniformly on K (Cy),

(i) 001 (602 = 601)' Zia Mz, iy = O, (\/W)

(i1) ZZ LMz, Zin (ZiAMZi*ZiA) ZiaMz e = Oy (N);

(111) ZZ VEinMz, Zin (Z{AMZZ.OZ,A)f ZiaMz, e50 = Oy (N).

1

S

The proofs of Lemmas 1 and 2 can be found in the supplementary Appendix B.
A.2 Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. To obtain the inequality

(33) in Case 2 of I(1) vy, Lemmas 3 and 4 are needed.

6



Lemma 3 Under Assumptions 1-9 and 10, uniformly on K(Cy) and for each i =
1,...N, as (N,T) — oo

(1) TZZ/AZ%A =0, (1), 2 Z{xZix = Oy (1);

(ii) ﬁ ZinEik = %ZZAEZA =0, (1), Z/*Ez* =0y (1);

(iii) VT ZinEio = \%Zi’A&A =0, (1), 7Zisei0 = Oy (1);

()7 ViV = Op (%), 7ZiaVa = O, <%ﬁ>; v ZixVe =0, (ﬁ)
Lemma 4 Under Assumptions 1-9 and 10, uniformly on K (Cy),

() £ (ba = ) Zis Mty = Oy (VTow) + 0, (/%2 )

(M’) Zz 1 51* Z'A (ZZ(AMZi*ZiA) ZZAMZ'L* ik O ( ) + Op (T)’
(iii) ZZ 1 z() ZiA (ZZ{AMZiOZiA) ZZAMZZ-@E@'Q = Op( )+Op (7).

Proof of Theorem 2. As in the proof of Theorem 1, it is suffices to show for

any € > 0, for large N and T,

1 . 1
P(SupK(Ck)|fZi]i1J2i(kl7k27k3)’ > me(Ck)fZLJu(kh ko, k) < e

In Case 2, the only difference lies in that v;; changes from 7(0) to I(1). Since z;; =
I fi+vi and &y = TV f+0y, 2y = (2, 7',) remains I(1) for I(1) f;. Thus, with Lemma
3, the following result remains unchanged, infgc,) %ZfilJM(/ﬁ, ko, ks) > Omin®n 1
with probability tending to 1. As in the proof of Theorem 1, we need to show

P(SupK Ck)T¢ |Zz 1‘]271(]{:1’ kQ’ k3)‘ > len) N (35)

By Lemma 4,

S Tai(ky, Koy, k)| < 300 [(Gi2 _51'1)/Z{AMZ' Eixl]
e Mg Zin(Zia Mz, Zin) ' ZiaMz 23y
Yo V€M, Zin(ZiaM g, Zin) ™ Zia M, €50
= Oy(\/Tona) + Op(TONINTY) + 0, (N) + O, (T).

Thus,

1

T T2tk ko, k)| = Op(T ™20y )+ O (N 201 %)+ Op(NT ™ 63)+0p(
N,1

)-

1
PN
(N’T) — 00 o0, T¢ |J2(k17k27k3)|
vanishes for any (ki1, ko, k3) € K(Cy). Therefore, (35) is established, and Theorem 2

is proved.



A.3 Proofs of Propositions 1 and 2

In this subsection, we also assume m = 3, including two breaks £, k9 in slopes

and a third one k) in error factor loadings. Let

0 1.0
V.(ky, ky) = diag <( Vyps - ’U;,k?),7 (U;(k?ﬂ), ""Ug,kg)/, (Uz,',ngrl’ ...,UQT)/> .
in order to prove Propositions 1 and 2, we first give the following Lemma.

Lemma 5 Under Assumptions 1-5, 7, 8, and uniformly over K (C}y) and
for eachi=1,..,N, as (N,T) — oo,

(i) 17V (K7, k) Mg ug ag) V (RY, k)| = Op(N 1), |7V (RY, 59) Mg 49 Vi (KT, kD) =
Op(1)

(ii)|| 7F (R, k9) Mo o) F (B, KS)|| = O (NT1), |5V (Y, k) Mo o) F (Y, kD) =

Op(N_1/2)'
(iii) |7V (K, k3)'eil| = Op(x) + Opl ), 17V (KT, K9)'FO (KT, k9)|| =
(iv) [|7F” (KD, k9)eil| = Oy (1).

1.
/N7

Lemma 6 Under the Assumptions 1-5, 7, 8 and q < p,as (N,T) — oo,

1
vT

Proof of Lemma 6. We consider the case of two common breaks in the

1 / Lo
FXi (R, Ka) M) X (R, K2) = V(KL k) V(R K2) + O ( )+ Op(—=

7 )-

slopes and one in the error factor loadings, i.e., my = 2, m; = 1. In matrix

form,
/ !
B fivi
Yi= : + : + &
Lo Bimo+1 FrYimi+1
= X, (k{, kDb +  F(k3)  gi + e,
Tx[(m1+1)p]

where X, (k{, kY) = diag (X, Xio, Xi3), F(k3) = diag((fi,--, fug)'s (fagsrs -

T'x[(ma1+1)p]
and g; = (71, %ia)"-
We use X (k9) :dz‘ag((zg,...,;z;o)/,(@OH,...,@/T)') to proxy F(kY),
Tx[(m1+1)p] ’ ’
F(kg) = X(k) = TF(k) r +  V(k)
At gl Tl DD P Dy 11

=F(k9) (L @ T) + V(kS),

fr)')



where V(K)) = diag((V,,...,0.,), (T +,....,25)"), and r = diag (T,--- ,T) =
TX[(n(u?r)l)Q] 901, - 0g)'s W - Fr)) [(ma+1)q] X [(ma+1)q] 9 )

I ®T.
Denote FO(k9) = [F(k3), Orx(m;+1)(p—g)) @and the full rank matrix

= |Bim .B_(m
[(m1+1)p]x [(m1+1)p] [Bimi+1)q)> B—(mi+1)d]

—_1 —_1 —
1_‘(m1+1)q _I‘(m1+l)q1_‘*(m1+1)q

Omi+1)p—a)xg  Lma+1)p—(mi+1)g

Deﬁnef‘ = [f(m1+1)q>f—(m1+1)q] and V(ICl) = [Vm1+1 (ICl) V (m1+1)q(lcl)]7 simi-
lar to the definitions of C = [C,,,C_,,] and U = [U,,,U_,,] in P.62 of Kara-
biyik et al. (2017). Thus,

F(K1)B = X(K,)B = F(K,)T + V(/CI)B
= (K1) + [Vm1+1 ST 1y Ve (K1)

V(m1+1)q<lcl) m1+1) r_ (m1+1)q]

andFO(K,) = FO(K,)+VO(K,) with VO(K,) = V(K;)BDy = [‘_/(?mﬂ)q(lCl), V_O(
Since BDy is positive definite, MF( ) MFO( K1)-

Define the pseudo-inverse I'" = I'(I'T') ! such that T'T" = I(m,+1)q- Fol-
lowing equation (S20) of Karabiyik et al. (2017), we obtain

K1)l

m1+1)q(

X.(Ko) = F(Ko)T; + V; = F(Ko)TT T, 4 V,(Ko)
= F(Ko)T' T — (F(Ko) — F(Ko)T)T' T + V,(Ko)
FO(Ko) D' BT, — V(Ko) I Ty + V,(Ko), (36)

and

/ 1 !/
_X‘(ICU)MX(ICI)Xi(’CO) - fli(’CO)MFO(m)Xi(ICO)

Lo
= 72X (Ko) Mo ) X (Ko)

1
+ 7 XI00) Mooy = Mooy | XalKo) — (37)

By following the proof of Lemma S.2 in Karabiyik et al. (2017), we

show that the first term above is as follows:

1

1 1
TX/(k?v kO)M]FO k9) X (k??, ko) TK;(k?a kg)zz(k?7 /{JS) + OP(N) + OP(ﬁ)



Similarly, since

1 1 -
(M}FO(kg) - M]%O(k?,kg)) - ﬁFO(k?y k?(z)) (ﬁFO,(kO kO)FO(kO ko)) FO,(ZC?, k?(z))

- 7 F ) (FRDFD) ) F) + o,(0),

there exists at least [T'xmin{\?, \, ..., \’ }]?> elements equal to 0. Thus, given
equation (S62) of Karabiyik et al. (2017), ||MfF0(k;§) _MFO(k?,kg)H = 0,(%),and
the second term in equation (37) above shrinks to 0 as T — co. Combining

these terms together, we show that

1
vT

Proof of Proposition 1. Following equation (S17) of Karabiyik et al.
(2017), we obtain F(k}) = X (k9) = F(kQ)T + V(k9). Thus,

1 1 1
X (K8, K Mo X (9, K9) = VIS, BV, (K, 1) + Oy() + Ol =)

F(k§) = X(kg)T" — V(KL (38)
For the individual series i = 1, ..., N, plugging equation (38) into (14) gives,

Y, = (k‘f,kzo)b +F(l€0)gz+€z
Sk Kb+ X (BT g — V(EDT g +
((er, Fea)bi + [ (KD, K3) — Xk, Ko) s
+X (k3)T" g + [X () — X (ks)]T " g,
— V(E)T " g:. (39)

29

ol
|>< [><

Plugging equation (39) above into the expression of b, gives,

bi = bilky, ko) = [X, (b, ko) Mg X (b, ko)) 7' X (e, B ) Mg, Ve (40)
bi + [ X, (, ko) Mgy X (ky, ea)] !
X X (ks o) Mo [ X (R R9) — X (R, o)
1) ]%2),MX( (X (KS) — X (ks)]gi + X, (ky, /%2),MX(;;3)&
— X, (k) Mg, V(kg)fﬂqi}.

10



Thus, we decompose VT'(b; — b;) into six terms,

) 1 (1
VT(b; — b)) = [f&(’fbkz)lﬂ/[g(gg)&(/ﬂh ko) X (kY k) My, 2

{7
1 ~ ~
— ﬁ[gi(l{?, k) — X, (K, ko) | M, i
1 ’ ¥ 3
=X, (K kD) Mg, V()T g,
ﬁ—z( 1 2) Xk (k3)L'g

1 ;o =Nt
+ ﬁ[&i(k(l)a kg) — X, (ky, kz)]MX(k3)V(k§)F 9i

1 A
+ﬁX (kl,kg)M X (ks [X (K9, kD) — X, (Ky, ko)]bs

Xl R Mg (X0 - Kl | (41)

Under Theorem 1, ky — kY = 0,(1), ky — k9 = 0,(1), and ks — kI = 0,(1), for
each i, X, (ky, ko) % X, (K9, k9) and M i) S Mxg)- Thus, under Assumption
6 (i),

1 FUA PO 1
flz'(kfla k2)/MX(k3)5i(kh k?2) - fli(kgv kg)/MX(kg)Xi(k(l)» kg) =0,

As in KPY, in the model considered in Case 1, after the transformation
using Mx ;. MX(%S)XZ-(/%M/%Q) becomes stationary since I(1) f; is removed

asymptotically in regressors r;;, as shown in Lemma 6, that is,

Yxi = plimr_o X'(k(l)v kg)/MX(kg)Xi(k'?» k‘g)

T_z
. 1
= plimy 00 ng(k(l)a kg)zz(k?a kg)
For the second term of equation (41) inside the curly braces, by Theorem 1,
P (ks # 09,0y # 1) = P (Jhy # K9] > 1,1y # k8] > 1) = 0. For any 5> 0,
P(IT 21X (KD, k9) — X,k
= P(IT7LX(R), k3) — Xk
P(||T2[X (kY k) — K(
= P(O > U)P(kl = kl,kg = kQ)
P|T2(X (K, k9) = X (a, )| Mg g, il > m| by 7 K9, ko 7 K9) Py # kS, ko # K9)
< P(0>n)(ky =Kk, ko = k) + Pk # K, ks # £5) — 0.

N (i) Eill > 1)
ko) | M (i) Eill > 1, ky =k, by = K9)
k)] M jp)Eill >,k # K ke # K)

Thus, T-V2[X, (k) k9) — X, (k:l,k;g)]M i€ = 0p(1). Similar arguments show
that ) Tﬁl/Qii(l%la %Q)IMX(I@)[X@'(k‘?? kg)_zz(kh kQ)]bl = Op(l) and Tﬁl/Q[Xi(k‘?? kg)_
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X, (ki ko) Mg [ X (KS) — X (ks)]gi = 0p(1).
Thus, the expression vT(b; — b;) of equation (41) reduces to

A 1 o1
VT(b; — b;) = [fli(k% ko) Mgy X (kY k3)] l[ﬁii(k% ko) Mg i

1 / — =+
- ﬁii (K7, k) MX(kg)V(kg)F gi] + 0p(1).
Next, we need to consider the asymptotic distribution of
1 0 7.0y/ 1 0 7.0\/ 7 (7. \T°T
ﬁ&(k‘u k3) Mx )80 — ﬁ&(k‘p k3) Mx o)V (k)T g;.

Our proof proceeds by following that of Theorem 3 of Karabiyik et al.
(2017). First, consider

1 1
ﬁ&(k’?a k3) Mxgg)6i = Qnr + ﬁ&-(’f?» ko) [Mxgg) — Mxgougles  (42)

where

1
Qr = —=X, (K], kg)/MFO(k?,kS)gi

VT

1 _ _
= LK) =TT VO e
1 _ _
- ﬁ[ﬁi(k?» k) — DU(T) TV (K, k9)] Pro o )&
1 _ _
+ VR R LYV (2, B Mo o 49) — Moy ag) e
= Qor — Q117 + Qar.
Since
e X (R, K [ Mgy — Mo s Jeil| < VIS XS0, K el % 1Mooy — Mo s
\/T—i 15 2 X(K9) X(KY,k9) 1l = T—i 1, h2) i X(K9) X (K9,K9)
1 1

we focus on Qr = Qor — Q17 + Q2r. By Lemma 5(iii), we have

1
Qor = —Ki(k(1)7 kg)lﬁi +

1
\/T FZ<F )JrV(k?? kg)/gi

VT
1 0 7.0V/ ﬁ !
B ﬁzi(klv ka)'ei + OP(W) - Op(\/_ﬁ).

12



Similarly, by Lemmab(iii) and (iv),

|Qurl| = V(K k)" = To(TTYV (Y, k3)'] Proao ag il

\/—II

1 1 / /
< ﬁHTV (k?7 ko)/FO(l{;?v ko)][TQFO (k?7 k(])FO(k?a ko)] [TFO (k?a kg)gl]H
11 , 1, 1
+ ﬁl\Fi(F+) 7V (R Ry B (RY, R [ B (R R BV (RY, o) [ (R, ey
1 1 1
= Op(—=) + Op(——) = Op(—=).
P(ﬁ) P(\/ﬁ) p(ﬁ)

For the term ()1, according to equation (S29) of Karabiyik et al. (2017),
we first obtain that

T2(M]11"0(k0 k9) _MFO(kO ko)

=T 10K RV 130 BV g (B RO V211 K B2
TZF(k?,k%'F(k?,k°>>+v(ml+1>q<k?,k°>
(RS B) G F R, ROF(RS, 1)) F (), RS

+‘7(m1+1 (k(l)a ko)(

1
+F (KT, k3)'(

TQ}F(]{:(I)’ ko) F(k?7 k:(2)>>+‘7(8n1+1)q(k(1)7 kg)

. 1 .
+IFO(KY, kS)[(T2 FO(K, KS)FO (Y, k9)) " — S JFO (K, K9)', (43)
= F (Y, K9)F (KD, k9) Of(m14+1)g)x [(m1+1)(g—)]

where Yo =
L Omr@emixtmianad 7V e 1g (KD K VO 19 (K K9)

We plug the above expression (43) into Qor,

1
Qor = ﬁlfi(k?, k2) (Moo k9) = Mro(ug 19) )i
1 _
- ﬁr i(T ) V(KD k) (MFO(k?,kg) - MJFO(k(l’,kg))Ei
=Qar1 — Qarp-

13



First,

1
Qa1 :TQ—ﬁVi(k?’ kS)IT2(MF0(k?,kS - MFO(kO,kO))gi

1
[TV(k:?,kO)V (m1+1)q (/{5(1),]{30)][ V0m1+1 (k?,k(])‘/ (m1+1)q (kj??ko)]
1

T

X KO k9)ei]

[ﬁvo(mﬁ-l (

1 1 1 1-
+ﬁ[fv(k(1)’ kO) le—l—l)q(k[l)? kg)](TQF(k?a ko) ]F(k(l)’ kg))—’—[fx/(?nl—l-l)q(k(l)? k’g)/f‘:z]
1 1 1 1
+ﬁ[TV(l€?7 kO) Vm1+1 (k?7 ko)](TQF(k?7 k(]),F(k(l)a ko)) [T]F(kga kg)/gl]
1 1 1 1
LV, MR, M) O, KR K 1V A0,
11 . 1. ) 1.
VAR B AD, K 6 YO ) — S0, 19

According to Lemma 5 (iii) and (iv), ||Qar1|| = (\%) Similar argument
show that ||Qar2|| = O ( 5y +0, ( —). Thus, [|Qar|| = O ( LY+ 0, ( ~) +
0,5

According to Lemma 5(it), 7. X (A7, k9) M9,V (k3) = Op(N 1), T-Y2X (K, k9) M)V (k3) =
O, (T*/2N~1), thus, the third term

177125 (K9, k3) Mgy V(BT il | = Op(TY/N ).
Combining all these terms together, we obtain

. 1
VT(bi—b;) = [=X, (k) kS)’MX(kg)&(k:?, kD] —=V. (kY k9) &40, (TN )40, (1) .

X s

According to Lemma 6,

. 1
Yx,i = plimr_ e Tﬁi (K, kg)/MX(kg)Xi(k% k3)

1
V(R B9) V(R R3)

and then
1
ZXE,i = plzmT—mosz(k% kg)/zs,zzz(k(l)v kg)/>

as TV2N-1 0, we obtain \/T(ZAJZ —b;) i> N(0, Z)_(,liZX&iz)_(,li)'

14



Proof of Proposition 2. Under Assumption 4, the asymptotic distribution of

mean-group estimator can be derived similarly. Thus, we obtain

VN (61\40 — b) = N_l/zzi]\;”b,i

1w 1o, - P

+\/—N21»:1 [f&(’fla ko) Mgy X3 (K, K2)] f&(k?a k) Mx i, €i

+\/LNZ£1[%X1-(I%1, l%g)'MX(,;3)Xi(’%1, 1%2)]_1%[Xi(’%1, ko) — X (K, kg)]/MX(igg)fi
WLNZH%&(!%, o) Mg ., X (B, @rl%&(%l, o) Mg g, (X (B, Fea) — X (RS, K9)]bs
I X ) My X R X R Mg R ) = Xk
S X o) Mg X, )| 2 ) M V()T

By Assumption 4, the limiting distribution of the first term is N (0, %,;). For the

second term, equation (42) in the Proof of Proposition 1 implies that

1 1 1 1 1
\/—(\/— l \/—N)JrOp(ﬁ)) :Op(ﬁ),

s (N,T) — oo. Thus, E[Txi(k?,kg)’]\/[x(ko)é &iMx (1) X (K, E9)] = O(5), and

1
fii(k?a kg)IMX(kg) kY, k) ei + Oy

Var(N“V2 N [T X (ky, k) Mg, Xk k)] 7T X (KD, K9) Mg, 640)

1
=NT iy (T X (e, o) Mg X (R, o)) ™ (T X (R, KS) MgV ar(€5) Mg 1 X (KD, K9))

x (I~ lxxkzl, k) MX<,;3)L<k1, k2)) "t = 0(T 7).

Thus, N=V250 [T X (ky, ko) Mg g, X (ki ko) VT 71X (RS D) Mg 1 = Op(T712).
Similarly, the last term is O,(N~Y/27~1).

As in the proof of Proposition 1, the second, third and fourth terms are also
0p(1). According to Lemma 5(ii) and o the definition of Ry in the equation
(S21) of Karabiyik et al. (2017), we can follow the proof of Lemma S.1 of
Karabiyik et al. (2017) to show that

0 7 (1.0 1
DX k) M, V) = Oyl )

without any restriction on the rate at which N and T tend to infinity.

Therefore, as (N,T) — oo,

VN (b —b) = NN 4 0,(1) 5 N (0,5).

A.4 Proofs of Propositions 3, 4
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Proof of Proposition 3. We will show that the convergence rate of b; is 7.

From equation (34), T'(b; — b;) can be decomposed into five terms,

~

T(bi — bi) = [T X, (ky, I%Q)IMX(JQS)KN%L 1%2)]_1%11'(]{7?7 kg)/MX(Eg)gi

(72X, o) Mg X e, 1%2)]‘1%[&(%, k) — X, (ky, ko)) M, i
—[T2 X (kn, bea) Mg X /%2)]1%&(7%1a ko) My i) V()T g

HT 72X (o, o) Mg X (e, 12?2)]_1% (X (9, K9) — X (ha, o) Mg g, V(BT g
T2 X, (ks ko) Mg X (i, /%2)]1%X¢(7%1, o) Mg, [ X (R, K9) — Xk, K) b

Under Theorem 2, ky — k¥ = 0,(1), ky — k9 = 0,(1) and ks — kY = 0,(1), for each i,
X, (l%l, l%2> — X, (K9, k%) 5 0 and Mx i) RS Mz sg)- Thus, similar to equation (37)
in the proof of Proposition 1, except the first term, the other four terms above are

o, (1), ie.,

~ ~ ~ ~ ~ ~ ~ /
T(b; — bi) = [T2 X, (ky, ko) My, X (R, ko) 7' T X, </€1, kz) Mx )i + 0p (1) -
Thus, to prove Proposition 3, we need to show that the first term above converges

weakly to a non-degenerate distribution. Given that
TﬁQXi(]%h I%Q)IMX(IQ:),)XZ'(]%D ]%2) - TﬁQXi(kga kg)/MX(kg)Xi<k?v kg) = 0,

-1
it is equivalent to show that [I%Xi(k?, k) M 1i9) X (K1, kg)] X, (K, KS) Mx 9)€i
converges weakly to a non-degenerate distribution.
Following Phillips and Moon (1999), we will show that as T'— oo,
1
ﬁii(k%kg),MX(kg)Xi(k?vkg) = G,

1

where G; and H; are two non-degenerate distributions, respectively, which will be
specified below. Therefore, as T — oo, T(b; — b;) = G ' Hi.
Consider the term 75 X (A7, k9)' M9, X, (K7, k9) first. Denote X, (k7, k) = diag (X1, Xz, Xia)

with X (k) = (2, ---7xi,k‘1)),7 Xig (K7, k9) = (xi,k?+17 “wxikg),a Xis(kg) = (xi,ngrl? o mr)
(kY xp) (k3 —k7)xp (T—kS)xp
Fl - (fh ey fk(l))lv F2 = (fk?—l—lv '-')fkg),7 and F3 = (fkg-l—la ceey fT)/7 and ‘/;317 ‘/;27 ‘/;3’ €145
E9;, €3; ale similarly defined. Thus, Kz(k’?, k?g) = dzag(FlFZ+‘/21, F2ri+‘/;27 F3PI—|—‘/;3)
Let Fy = (f1,., frg)" and Fs = (fyg41, -, fr)', we define F(k3) = diag(Fy, F5),

and V(k3) = diag(Vi,Va) with V; = (01, -, )" and Vy = (Urg41s - U7)". When
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the rank condition is satisfied and X (k) = F(k)T + V(k9), Mgy X (K7, k9) =
M) X (K7, k) + 0p(1), as (N, T) — oo. Thus,

T2X, (K, kgyMIF(kg)Xi(k?? k3)

= T *diag(F\L; + Vi1, FoTi + Vig, FsIs 4 Vig)' % diag(FiL; + Vir, FoT's + Vig, F3T; + Vi)
— [T2diag(FiT; + Vi1, Fols + Vig, F3T; + Vig)'F(KS)|(T>F' (k3)F (k3)) ™

x [T72°F (k3)diag(FiT; + Vi, Fol'y + Vig, F3T; + Vig)]. (44)

According to Phillips and Moon (1999, P.1062), under Assumption 12, for any
0<n<m<1,

T2
2y, = / W W ) PU(1) = / BB, — (45)

where B, ; is a Brownian motion with covariance W;(1)P,P/¥,;(1)". Similarly, under

Assumptions 5, 12 and 13,

T2 )

ey = nwel [ wavpenay = [ BB, o
1 T1

2yl e ([ wow )Py = [ BB 47

Z:[TlT]ft/U’L'tj ( )Q( %2 g,i) 7 ’L( ) pHir ( )
T1 T1

In addition, under Assumptions 5, 8, and Lemma 8 of Phillips and Moon (1999),
d
T”E{fﬂf@t = H(l)Q(/ Wed(Wei))oi + 32020 2ooso E(@t€ines)
d

= [ Bud(Bu) + T S B (48)

[

Moreover, under Assumptions 5, 12 and 13,
d
712{5:7;]]%5# = \111(1)]32(/ WeidWei))oi + D oo > e o E(Sit€itrs)

d
= [ Bud(Bo) + 5% S Blsuciars) (49)
Consider the first term in equation (44) above,

T_Qdiag(Flri + Vit, ol + Vig, F3U; + Vig)' X diag(FAL; + Vix, FoT + Vig, F3T; + Vig)

=T 2diag (F1T; + Vi) (F\T; + Vir), (Foly + Vo) (FoTy 4 Vig), (F3L; + Viz) (F3T; + Vis)) .

According to equations (45)-(47),

A? Ag? A‘} )\0
T—Q(iji—}-vjl)’(};’jfi—i—vij) =T /AO B@B;Fi%—(/o Bg,iB;)FpLP;(/AO B¢Bgﬁi)+/x)
j—1 j—1 j—1 j—1

17
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for j = {1,2,3} with AJ = 0 and A\J = 1. Thus,
Tﬁ2diag(F1Fi + Vit, BoTs + Vig, F3T + Vig)' - diag(FiL; + Vir, FoT'; + Vi, 3T + Vi)
A? A A A
— diag(T" / BB, + ( / Bo.BL)T, +T( / B,B.)+ / BB,
0 0 0 0

X X X X
v BB ([ B[ B+ [ B

0 0 0
1 A1 1 1

1 1 1 n
I /A BB, + ( A BB+ I /A BeB) + A BBL;) =G

0
2 2 2 2

Similarly, according to equations (46) and (47), the second term in equation (44)
T 2diag(FiL; + Vir, FoT; + Vig, F3T; + Vis)'F(k3)
=T~ (F{F(K§)T; + F' (k) Vir, F3F (k)T + F'(k§) Via, FsF (KT + F'(k$)Vis) '

Next, we derive the limiting distributions of the terms above. Without loss of
generality, we assume that kY < k3 < kf and define Fa = (figi1,- -+, fag)'- Since

F(/{Zg) = diag(F4, F5),

T 2diag(FiT; + Viy, Fol's + Vig, F3T; + Vig) diag(Fy, Fs)

LLFY + Vi
pxk? F4
_ L LiFs + Vi K5xq
72 px (K —k9) F
LUF + Vi, (1=K
px(T—k9)
%F;F{FI + %2‘/@/1]71 Opxq
= %F2F5F2 + %V;QFE Opxq )

72 DiFAFA + 75 VINFA 72 DiF§Fs + 75 VisFs
then

T2diag(FiT; + Viy, Fol's + Vig, F3T; + Vig) diag(Fy, Fs)

AL A?
F; fo}\o Bchlp + fo}\o BgiBZp Opxq
= | I} f)&f BwBé: + fxf Bc,ing Opxgq = Gio.

A0 A9 1 1
r f,\33 B,B, + fA(; BB, T; f/\g B,B, + ng BB,

iy —21v( 1.0 0 —2.9; ' / . A3 1ol ’
In addition, T7°F' (K)F(ky) = T 2diag(FiFy, FiF5) = diag([,* BB, [0 ByBl).
3

Thus, we obtain
T_2Ki(k?7 kg)/MF(kg)Ki(k?: /‘Cg) (50)

AJ 1
Gy — Gadiag (( / B,B.)"( / BS(,B;)1> Gl =G
0 A

0
3

18



Likewise, 2F(kQ)'e; = Ldiag(F}, F)e; = diag ( S Bod(B.y), [y B@d(Be,i)) and
then

T X, (KD, KS) Mg e
BT (kKD Mpg)ei
= T 'diag(F\l; 4 Vi1, FoTi + Vig, FsDs + Vig)'e;

— T iag(Fi\T; + Vi, oDy + Vig, FsTy + Vig)'F(kS) (F(KS)'F(k3)) ' F(k3)e;
T ' Fley + T 'Wewy
= T T Fieq; + T 'Wiheo,
T Fiesy + T Whes;
/1
—T*diag(FiT; + Vi1, Fol'y + Vig, F3T'y + Vig)F(k3) (T°F(kS)'F(k5)) ' (TF(kg)’ei> :

According to equations (46), (48), and (49),

/

T'X, (k:?,k:“ XO0)E (51)

FI fo B d(BEZ)+FI Zt OZS OE(‘ptgzt-Fs ‘l'fo B”d Bsi)+2?oozzooE(§it,5it+s)
pYY
= F/ QB d(Bsz)+F/Zt OZS OE PtEit+s +f ZB stz _'_Zt OZS OE(gzt751t+s)
(B

I f)\o Bod(Bei) + 1732750 22020 B (@igies) + fAO Boid(Bei) + 3220 > aco B (Sits €its)

A9 1
— Gdiag ((/ BwB;)_l, (/ B@B;)—l)
0 A9

kg oo 00 oo 00
« diag ( / Bod(B.) + 33 E (i), / Bod(B.) + 33 E(pieies ) _H,
t=0 s=0 t=0 s=0
(52)

Proof of Proposition 4. By the same argument in the proof of Proposition 2,
we can obtain equation (20),

N

W(bMG—b) \/_vaﬁ\/_TZ

In a special case of homogeneous slopes b; = b with v,; = 0, we have,

VNT (b —b) = WZ::

1 s Y 1l e g
( Xk, ko) Mg >L<kl,k2>> ?11‘(’“7"/’2)’%;@5"]

1 NN S *11
(_X'(kl’k’?) MX(%S)Xi(kl’k2)> T (klakQ) )52 +0p (1)

-1

b X (o) Mg Xl b)) 3 O, o) Mg

As in the proof of Proposition 3 above, <ﬁ
weakly converges a non-degenerate distribution G ' H;.
Under the assumptions that €, s, gjv are independent for all (7, 5) and (¢, s,t'),

and F(ey) =0, E %Xi(fﬁ, ]%2>/MX(I%3)&] = 0. Thus, VNT <I;MG — b) is consistent,
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s (N,T) — oo. In addition, under the assumption cross-sectional independence
of €y, G; 'H; are independent across i. Thus, by the Central Limit Theory, the
limiting distribution of v NT <Z;MG - b) is multivariate normal, i.e., as (NV,T) —
0o, VNT <I;MG — b) N N(0,Xp¢). Next, we derive the expression of ¥j4. For
simplicity, asymptotic bias mentioned in Theorem 8 of Phillips and Moon (1999)
and Proposition 1 of Bai, Ng and Kao (2009) disappears here under the assumptions
of no serial/ cross-sectional correlation and heteroskedasticity.

Let wiy = (€4, ¢}, sl)". Denote the long-run covariance matrix of wy, partitioned

comfortably for w;, by

o0 Qa.i Qag&i Qagi
Q=Y Blwowl) = | Qe QD
j=—00 Qqsz’ anpi Qg.i

Denote L ~ N(0,1,) and Ly ~ N(0,I,). thus, as T — oo, LF'e; = [ Byd(B.;) =
il ~ Qiézﬂi/2 x Ly, %Vi’ei = fol B d(B:;) = & ~ Q20N « Lo, where &; and
px1

i "%
rx1

&0 are Gaussian processes, independent across . Similarly, as T" — o0,

VIR = / BB, = &,

pPXT 12

FF:>/ B,B, =&, 2v’vz>/ B.;B., = &s

pXp

T

where &3, &4 and ;5 are Gaussian processes. The proof of Proposition 3 above shows,

X, (kY kD) M) X (K, k9) = Gi. According to the definitions of i1, &2, &3, &4, and
Y 0
let A= | AJ—\? 0 , we obtain
A =AY 1=

Gi = diag(\), A5 — A), 1= \)) ® (Di&als + &isly + €05 + is)

F/)\Og4 + )\1&3 Op><r )\064 -1
DI — A& + (A - M) Oper (M e )
T (A = A& + (A3 =AD&z Ti(1 — A& + (1 — A3)is 35
F;A(l)fll + )\(1)523» Op><r ,

DHAS =AD&+ (A — AD)&is T — A& + (1 — A)&is
=diag(A\},\] — A}, 1 — A9) @ (D5l + &l + Tils + &is)
— A ® (Di&s + &) diag((A3€a) ™", (1 = MDE) ™) A @ (i + &i3)]
Similarly, sincet X, (K9, k9)’ Mz y9)8: = H; and
/\?Féé}-l + )\[1)@2
Hi = | N =M+ A =AD& | — A ® (D& + &is) diag((A3€a) ™ (1 — A9)E) " )én
(1 =AD& + (1 — A&
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Therefore,

EMG = lim — Z E 2X ]{317 k'Q) MX(IA%)Xz(I%l? 1%2))_1(,11_1&1'(]%17 EZ)/MX(@)@J

N—oco N
(53)
X (T Mg X (kv Foo) YT 72X, (e, o) Mg X (R, B )™

= lim — ZE TUHHIGTY)

N—)oo

Following Phillips and Moon (1999, p. 1081), we can estimate consistently X ¢
by plugging the residuals &; into equation (53) above,

EMG—_Z

1 - 1 A -\t
(T EiMz 1, X (k1,k2)> (ﬁii(/ﬁ,kg)’MX(ES)Xi(kl,kQO ,

—1
o 1 . . )
( kla kQ) MX(%)Xi(kl’ kQ)) (Tiz(kh k:Q)/MX(l%:a)gi)

where &, = Y, — Xi(iﬁ, ]%Q)BMG. In this special case of b; = b, we use the efficient
estimator by instead of b;. In addition, the term X~7(k9) in equation (39) will be

partialled out by Mg in the expression above.
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Appendix B: Proofs of Lemmas

In this appendix, we provide detailed proofs of technical lemmas used in Appendix
A. Lemma 1 is used to prove Lemma 2 and Theorem 1. Lemma 3 is used to prove
Lemma 4 and Theorem 2.

We remind readers of the nontrivial notation that for the interval ¢ € [k; + 1, ko],
Yie = (0,00, Yiky 15 Yirks, 0, -, 0)', Zige = (0,..,0, 25 k415 -3 Zihy, 0, ..., 0)", €5y =
(0,000, €] 15 -+ Epgs 05 -, 0) and Vi = (0,+++,0, Uy 41, vy Uky, 0, -+, 0)". In addi-

tion, let ZzA = (O, ey O, Zi7k1+1, vy zi,k(2)7 O, ceey 0)/, ZOi* = (O, cees O, Zi,k(l)—l-l? ceey Zi,kz? O, ceey 0)/
Similarly, for the interval t € [1, k7], Zio = (2i1, -+ 249, 0, .-, 0)', Yio = (Yi1, -+, Y405 0, ..

and €}, = (¢}, o €10
‘1%2 — kg‘ and ‘1%3 —

the estimators of break fractions are consistent, we only consider the set K(Cj) =
{(ky, ko, ks) - 1< |kj — k9|, |k — k9| < Ch,aT < k; < (1 —a)T,j = (1,2,3)} for afi-

nite constant C}, and a > 0.

0,...,0)". As in BFK (2016), here we assume that ‘fcl — k?) ,

are bounded for simplicity. Under Assumption 1 and that

Lemma 1. Under Assumptions 1-5, 7,8, and uniformly over K (Cy) , as (N,T) —
oo, forv=1,..., N,

() 12 Zin = 0y (1), 1274y Zox = Oy (1)

(ii) %Z{Asi* fZ/AEZA Op (1), +Z0, % = O, (1);

(iii) \/LTZZ{A@'O = \/_TZiAgiA =0, (1), 7Z}ci0 = O, (1);

(V)% V4 Ve = Oy (§), ZiaVa = Oy () 420V = O (5 )

Proof of Lemma 1. (i) According to Lemma 1(b) in the supplementary ap-
pendix of Baltagi, Kao and Liu (2017), for any 0 < 73 < 75 < 1 and under Assump-

tion 5,
[r2T]

o) Z fifl = Op (s — 1) (54)

t [TlT]
In addition, according to Lemma 1(a) in the supplementary appendix of Baltagi,
Kao and Liu (2017), for any 0 < 71 < 75 < 1 and under Assumption 9,

[m2T]

— Z ViV, = Op (T2 — 71) - (55)

=[r1T)]
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Plugging x;; = L', fy + v into X;a gives
1 AT T
sz(AXiA Z,[s [)\]IT] ztmzt Zt [,\]1T] (F;ft + Uz‘t) (Féft + Uz‘t)/
T N1
= _Zt [)\1T] zftftF + Zt [AlT]'UztU“g
AT AT
+ = Z[ AT F/ft zt+ Z[ A1 T] UitftTi

Since |k; — kY| is bounded, [A\; — A})| = O, (£). Let Fa = (O- 20, fryt1y s fro, 0
1l

According to equation (49) and |\, — = 0, (%), 7FAFA = O, (1) under As-

(AT

sumption 1. Thus, 2 T 2ot T] IR AHY O,(1), under Assumption 3 that I'; is
bounded. From equation (50) and |\ — /\(1)| =0, (%), Z,[:)‘ [::]17“] vty = O, (%) -
Let Via = <O w0, Uikt U0, 00 0) Var (—FAV,-A) = O (1) under Assump-

tion 9. Thus, =S Pifer, = 0, (1) and LM v fiTi = 0, (1), Thus,

7XaXia = 0,(1) + 0, (7) = 0, (1).
Plugging 7, = ['f, + ¥, into X gives,
— N7 _ T = _ 5 _
TX/A Zt [A]lT]xtx; ZL /\]1T (' f, + o) (T f, + 0,)'
T T
SRAES 31 (Y] N 3 LR

AT AT _
+Tzz[€:1[>\]1TvtftF + Z[ /\]ITF/ftvg

According to equation (49), T" <% ZE{QT] fi fg) [ = O,(1), under Assumption 3
that T is bounded and [\, — X{| = O, (F). Under Assumption 9, we have F ||7||> =

0
%ZLEH%H%O( ). Also, EH S v < £ 28, (BlwlP) =0 (37)

and then % Zt [)\ 700 = Op (%7). Similarly, + Z[/\ 0T 7 0efili = Oy <—\/]1\,7) and
AT
%21[5:1[/\]1T] ' fv; =0, (W) Thus, X3 Xa = Op(1) + Oy (57) = Op(1).
Similarly,
1o L oy NT] K o)
TXiXa = T i TitT = Zt pur) (Tifu - va) (T'fi 4 01)
20T AT
Z[ AT F/ftftr+ Z[ ViUt
AOT] YT 3
+ 5 Zt \T] Tifiop + = Zt [/\1T]U”'ffT‘
:lr Zﬁ[ﬂﬂ LffiT = O, (1) is obvious. For the term & T ? [? 7] VU = WAVA,
1., - 1 1
—V!\VA = —V. Vi VIV i A,
priata Ty st ptiata
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where V_; A = % Z;V:Li#j Via. It’s obvious that V/\Via = O, (1) uniformly over i
and then == TN \Via =0, (TN) Since V/\ and ‘_/_i A are independent under Assump-

tion 3 and for the I** row of VAV_Z Adenoted by VZAV_Z A

1, - -
sgp Var (?VilAVZ-,A) = sup Var(= ; V.
1

_ K0 K0
=O(N 1) sup E(ﬁZt;kl Zt/lzkl VieVige)-

Under Assumption 9, sup; £ ( Zt b Zt, . mvlt,) = O(7z). Thus,

sup Var (\/TVEAV 1A) = (NT2

and then FVA\V_;A =0, (T\F) We obtain
1, - 1 1 1
—ViVa=0,| == | +0,| —= ) =0, | —=
Fai=0(57) 0 (775) -0 (7).
T _ A9 T -
F S Tt = Oy (g )Jand & ST vafiT = 0, (J7). Thus, £X(Xs =
O,(1). Lastly, we obtain +Z/,Zia = O, (1)

Similarly,
1 T L —por
T2 Xll* ik = T2 Zt 2[)\]1T] ”xzt T2 [—Q[A]lT (F;ft + vit) (F;ft + Uit)/
Ao T] AT
T2 Zt S Lifefili+ Tz Zt Q[AlTlvﬂf“zt

PoT] PoT]
+ ﬁztﬁpmnﬁ% + ﬁztjw]vuf{ﬂ

Under equation (54), 7z S DA fIT = O, (1). Under equation (55), = ZE’\Z[Z] 7] VitV =
0p(1). 7= S Tifivgy, = O, (%) and 5 S22y v il = Oy (£). Thus, 75X/ Xige =
0,(1). 7X3Xx = 0,(1) and 7 X/, Xy = O,(1) are shown similarly. Lastly,
72 Zix Zixe = Oy (1).

(ii) Under Assumption 8(v) and Lemma 1(i), for large T', Var (Zipcix) = ZipXciZin =
O(T). Thus, Z=Zircix = Op (1). 7:Z{xcik = Oy (1) is shown similarly.

(iii) is proved as the arguments of (ii) and is omitted.

(iv)Under Assumption 9, we have E||7,|* = 2 SN E v = O (
B AViVall < 2302, (Ello]*). Thus, E ||V V|| = O (%) and then
O, (%) . Similarly, E HTVAVA” =0 (%) and then VAVA = O, (%)

Since X;a = FAL'; + Via,

%) Also,
1
T

* V=

T12X! Ve = TV FA\Vy + T2V Vi

24



_ 0
For the first term, T-/2F\Vy = T~1/2 Zf;kl fiv;. Consider the I""row of matrix

T~Y2F\ Vg, under the Assumption 9 that v; are independent of common factor,

K
Var(T72 3" fuv) = [T B(S 0, fiefiu) | B, 0.

t=k1

Since E (Zfikl @tl’);) = O(x) and $FAFA = O,(1), Var (T*1/2 Zfikl flt@) =
O(L). Thus, T-V2F\Vyx = O, (N~'/2) and then T~ '/?T,FAVy = O, (N~'/?), under
Assumption 3 that I'; is bounded.

For the second term T—Y2V/\Vy = T~Y2V/\ VA,

T PVAVa = TN WA Via + T PVAV s,

where V_; A = % Z;V:L#j Via. It’s obvious that V/\Via = O, (1) uniformly over i
and then T7'2N7W/\Via = O, (T7'/?N~"). Since V/, and V_; o are independent
under Assumption 3 and for the I"* row of V/,V_; adenoted by V/,V_; A

sup;Var (T72Vi\V_in) = Suinar(T_l/QZfikl Vit
—1 C1 kY K9 /
=0 (N ) SupiE(T Zt:kl Zt’:kl Vilt ilt’)'

Under Assumption 9, sup, £ (% Zfikl Zf,(l):kl Vilt%;t/> = O(7). Thus,

1 - 1
sup Var (ﬁvﬁAV—i,A) =0 (W)

and then % WWViein =0, (ﬁ) We obtain

1 _ 1 1 1
Fvsle=0u () o () =0 ()
Lastly,
TV2X1\ Vs = 0, (NV2) + 0, (TV2N"12) = 0, (N2 |
According to Xa = Fal 4 Vi,
T2 X0V = T-V2F FA Vi + T2V V.

Since T~V?T"FAVye = O, (N"12) and T~2VAVy = O, (T"V2N1), thus, T2 X\ Vy =
O, (N~1/2).
We lastly conclude T~V2Z/\Vy = O, (N71/?).
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T7'Z!, Va = O, (N~'/%) can be shown as the proof of T~/2Z/, V4 = O, (N~1/2).

Lemma 2. Under Assumptions 1-8, uniformly on K (Cj),

(1) Yoy (82 = 0t) Zia My, pciye = Oy (\/W),

() Y, 1 Mo Zis (Zia Mz Zin) ™ ZiaMayy i = Oy (N);

(ii)) SN, £ My, Zin (Zia M, Zin) ™" ZiaMz, % = O, (N).

Proof of Lemma 2. (i) Since €}, = ez — 0, I'(TT") ' y;(k1), €jy = cix —
Va'(LT")'yy; for the interval [k) + 1,k»]. Plugging the expression of &}, into
SN 2(6i — 0n) Zia Mz, €5y gives

Sy (02 = 0i) Zia Mz, 4 €
= 202 = 00) ZinEin — iy (612 — 611) ZiaVael'(FTY) '
+ Y (02— 00) ZinZin(Zix Zin) " Zigein
— Y (02 = 00) ZinZin (Zig Zin) " Zig V' (TT) i,

For the first term,

Var[3or,(8ia — 61) Ziacin) = Soie (62 — 011) ZiaSeiZin (812 — i)
= O <T¢N,1) 9

Thus, SN (6 — 61)' Zixcinx = O, (VT¢n,1). By Lemma 1(i) and Assumption 8,
F2ia%e i Zin = Op(1). The second equality above is due to the fact that SN (0 —
0i1) ZiaYe i Zin(0i2—0;1) is of the same order of magnitude as Zi]il(ézg —0;1) (0i2—041).
Consider the second term. Since I"(I'T")~!; is bounded under Assumption 3,
Zf;l(ém —81) Z! AV I'(TT") "1, is of the same order of magnitude as vazl((in -
8i1)' ZiAV. By Lemma 1(iv),

()

N N
VCL?" 2(522 — 5i1),ZZ{AV* = 2(612 — 61‘1)/ZZ{AVCLT’ (‘7*) ZiA (512 — (511)
i=1 i=1
T T
-0 (N) 0(oxs) =0 (oma).
Thus, 32N, (00 — 641)' Z\Val'(TT') "1y, = O, ( %@V,l). By Lemma 1(i) and (iv)

NZ,AVG/T (V*) ZiA = Op(l) Thus Zi:l (512 — (Sﬂ)/ Z{AVCM” (V*) ZiA (512 — 511) is of

the same order of magnitude of O(T'N~1) ZN (6i2—6i1) (0i2 — 01) = O (TN pn1).

=1
For the third term, by Lemma 1(i) and (ii),

Var (S5, (0 = ) (T7 ZinZik) (T Zig Zin) " (T Zigeia) ) = O (é1)
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Thus,

N -1
Ziw (21 Z; 7! i
1A ik ik Hik ikCik
P T ( T2 ) T _O”<V¢N71)'

i=1
For the fourth term, by Lemma 1(i) and (iv),

Var (vazl (61— 00) (T ZinZine) (T Zig Zige) " (T IZ/*V*)f/(ff/)_lvlz’)
—0 (1) O (¢n.1) O (%) =0 (%) :

Thus, S, (02 — 0) ZinZix (Z1 Zox) ™ 2L, Vi () :op< ﬂx)

Lastly, Zi:l (512 5 ) ZIAMZ z* = O (\/TQSNJ).
(ii) Since &}, = g — v;I"(CT") "Ly, in interval [k + 1, ko),

SI‘IA'MZz'*Z’iA (Zz(AMZi*ZZA>71 Z’L{AMZZ'*E *
= el My Zin (ZiaMzy Zin) ™ ZiaMzycix
—el My, Zin (ZIaMy,, Zin) ™ ZiaMy, Vi (TT) ™'

(2 (2

—y (CT) T TV My, Zin (ZiaMz, Zin) ™ ZiaMy,, €ix

(2 K3

+71 (ff’)_l TV, Mz, Zia (ZfAMZi*ZiA)_l ZiaMz, Vil (I_‘l_")_1 Yi-

1

For the first term, by Lemma 1(i) and (ii),

1 1 1
T AMz i = TZ'A&'* — ?(T_IZZ{AZM) (T_IZz{*Zz‘*) (T Z yeix)

1 1
Thus, TZZ AMz, €ix is of same order of magnitude as = Z IAEix, as T — oo. Similarly,
ZQAMZ*ZZ-A is of same order of magnitude as —Z{AZZA, under Lemma 1(i) a

(N,T) — oo. In addition, since MZZ.*ZM( Z’AMZ*Z&)_1 ZixMz,, is positive
semidefinite,
el Mz Zin(Tr ZIAMz, Zin) * ZIanMz, eix > 0. In addition, [k —kY| is bounded

on K(Cy),
N
1 _ . —
NZ e My, Zin) (T Zia My Zin) (T2 ZIA Mz ix) = O, (1) .
=1

The above equation is due to the fact that since both == ZzAMZ Eix and 7 ZI\ My, Zin
is of order O, (1), the order of above term is same as the order of + ZZ L0, (1) =

0, (1).

27



Thus, by Lemma 1(i) and (ii),

ZN (T_l/Qgg*MZ«;*Ziﬁ)(T_lngMZz‘*ZiA)_l(T_lmzz{AMZi*gi*) = OP (N) :

i=1
For the second term, by Lemma 1(i), (ii) and (iv),

Zz‘]\il(T_l/Z‘S;*MZz‘* ZZA) (T_IZz{AMZi* ZiA)_l(T_1/2Z£AMZ¢*€i*)F,(FF/>_lryli
~0, (1)Op (N"12) 0, <\/N> ~0,(1).

The first equality above is due to the fact that the term IV(I'T")~1y; is bounded under
Assumption 1 and under the Lemma 1(i), (ii) and (iv), the order of the second term
is same as sum of finite elements on K(C}), also according to the proof of Lemma
7(iv) in BFK(2016) and thus "N, T-1/2¢, M, Zin = O, (\/N)

For the third term, by Lemma 1(i), (iii) and (iv),

N
> V(D) TV My, Zin(ZiaMaz,, Zin) ™' ZiaMz, eix = Oy (1),

i=1
which is showed similarly as the second term above.

For the fourth term, by Lemma 1(i) and (iv),

N
> V(T (T 2 Z A My, Va) (Zia Mz, ZiaT ™) (T2 Z{ g Mg, V3 )T (TTY) '
i=1

=0, (1) Op (N"V2) Op (N"V2) O,(N) = 0, (1).
Combining these four terms together, we obtain

Zi]ilgj;MZi*ZiA(Z(AMzi*ZiA)_IZz{AMzi*gj* = OP<N)'

(2

(iii) can be proved in the same way as (ii) by Lemma 1.

Lemma 3. Under Assumptions 1-10 and 12, uniformly on K(C%) and for i =
s Ny as (N, T) — oo,
1) 7ZinZia = Op (1), 72 Zix Zixe = O, (1);

) 72
ii) T_I/QZ{A&* = T‘l/ngAgiA =0, (1), T_IZZ{*&* =0, (1);
, T‘lZgogw =0, (1);

1

~ —

iii) T=Y2Z!\ei0 = T~ Y2 Z!\ein = O, (1
V)T 2V, Vae = O, (N1, T Z[\Vae = O, (N7V2), T3 Z Ve = O, (N71/2).
Proof of Lemma 3. (i) According to Lemma 1(b) in the supplementary ap-

A~ /N /N

pendix of Baltagi, Kao and Liu (2017), for any 0 < 73 < 75 < 1 and under Assump-
tion 12,

1 T
T2 EZQ[T]lT]Uz‘tU;t = Op (7'2 - Tl) . (56)
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Plugging x;; = L', fy + v into X;a gives

1 AT T
sz(AXiA Z,[s [)\]IT] ztmzt Zt [,\]1T] (F;ft + Uz‘t) (Féft + Uz‘t)/

T T
= _Zt A T] Lifefili + Zt [)\IT]Ultvzt

AT] A7)
+ = Z[ )qTF/ft zt+ Z[ )\IT'Uit.ft/Fi

Same as Lemma 1(i) , 7 Z:‘ [QT] I fi fiT: = O,(1). From equation (56) and [A\; — \Y| =

O, (%), %ZE{QT] vVl = Op (1) . According to Lemma 2(d) in the supplementary
appendix of Baltagi, Kao and Liu (2017), for any 0 < 73 < 75 < 1 and under
Assumption 6 and 12, uniformly over 4,

1
T2 fiva = Op (1 = 71). (57)

From equation (57) and [A\; — X[ = O, (%), + ZE’\:?[QT] I fil, = O, (1) and £ ZI[;\:?[QT] vi [iTi =
O, (1). Thus,
1

TXz{AXiA = Op(l) + Op (1) - Op (1> .

Plugging z; = [''f, + ¥ into XA gives

— — )\OT]

0 _ _
L ixa= zt BT, = z?siT (T fy + o) (T f + o0’

(T P
:F/( Zt [A]lT]ftft)F“‘ Z[ ] 0y

Same as Lemma 1() 7’(12£§[§1T1 fif)T = 0,(1). Under Assumption 12, we have

XA o
Ly oty = 0, (). Thus, LXAXA = 0,(1) + 0, (%) = 0,(1).
Similarly,
! v T 0T .
7XiXa = Z£ i, = E o (Tif+ v) (T fy + 5,
T )\ T
B A a8 RS i (N

I o7 ~ 0 =
TZE:[)\lT]F;ftvé + th:[)\lT]Uitft/F'

1 ZE’\:?&]IT] I fi fiT = O, (1) is obvious. For the term 7 ? 5} 71 Vit¥p = LVIAVA,
1 AVa = 7= ViaVia + V AVoin
T TN " T =
where V ;A = % Z;V Lisj Via. It’s obvious that uniformly over i, ﬁ IVia =

O, (). Since V/, and V_; o are independent under Assumption 3 and for the 1"
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row of VAV_Z adenoted by VZAV_Z A

1 - _
sup,Var(ViaVoia) = sup,Var(z Z iV
t k1
kO k,O

Z Z V—l tV—z Jt Supz Z ‘/ﬂt zlt

t kyt'= t k1

Under Assumption 12, E( Zt . ViV ) = O(N™1) and sup;, (l Efikl Vai Vi) =
O(1). Thus, sup, Var(zVisVoia) = (N_l) and then FVAV_;A = O, (N7V?).
We obtain AV/\Vyx = O, (N7') + 0, (N"/?) = 0, (N 1/2). Ly T fa =
O, (N~'/2) is proved similarly. Since %ZE [f]T] v fiT = O, (1), thus, X/ Xa =
O,(1) 4+ O, (N71/2) = 0,(1). Lastly, we obtain +Z/;Z;x = O, (1).
Similarly,
Lo [(A2T] 1 [)\2T] , , /
T2 7 Xige Xie = T2 Zt A T] Ty = T2 2at=[\T] (D3 fe + vie) (Tify + vie)
1
_ P‘QT] )\QT
) t=[A1T1F1ftftF + TQZt [AlT]UZtU%t
I —por AT
+ ﬁzz[fj[,\]ﬁ}r;ftvit + ﬁZ,E:Z[A]IT]UitftIFi-

Under equation (56), -5 L’\Q[:;]IT] Vvl = 0p(1). Thus, X/, Xix = Op(1). H X, Xy =

0,(1) and X}, Xix = O,(1) are shown similarly. Lastly, 752/, Zix = O, (1).
(ii) According to Lemma 2(d) in the supplementary appendix of Baltagi, Kao
and Liu(2017), for any 0 < 73 < 75 < 1 and under Assumptions 6,

Z[Tﬂ;lT]ftEZt = Op (7‘2 — 7’1) , (58)

uniformly over i. Since [\y — \}| = O, (T™1), T"?Fiein =T Zfikl fieiw = O, (T71)
and then T-'Fie;a = O,(1). Similarly, T-'V/xe;a = O, (1). Thus,

T ' X[ pcix = T 'TiFAgin + T 'V/sein =0, (1),

under the Assumption 3 that I'; is bounded.
Plugging z, = [ f, + v, gives

T 'Xheig = T T Fhein + T Vi,

Under the Assumption 3 that T' is bounded, T-'T"Fhe;a = O,(1). T 'Vicia =
O, (N7Y/2) and then T7' X% = O,(1) + O, (N~1/2) = O,(1).
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Lastly, we obtain T7'Z/ e;x = O, (1). T ?Z,cix = O, (1) is shown similarly
and omitted.
(iii) is proved as the arguments of (ii).

(iv) Since
o ) - 1
T2VaVa =T 2Zfik1 (ve0y) = QZt (7 Zi]ilvit)(NZ?ilvit)/'
under Assumption 12,

_ 1
T2E(VR Vi) = TE(2, <N—12£ilvu><ﬁzfv i)
< sup;, N"'T2E[3F pVitVy] = O (N71)

Thus, = 72 LV V* O, (%) %XVA =0, (%) is proved similarly and omitted.
Since X;ao = FAl'; + Via,
1 _ _
T7XiaVa = TT/ZFAV* + Vi/AV*'
For the first term, +FAVy = 7 Zfikl fi0;. Consider the I""row of matrix & FA Vi,

under the Assumption 12 that v;; are independent of common factor,

1 k? _ 1 k(l) —1 k:(lj _
Var(T Zt:klfltvt):E(T Zt:klfltflt)E(T Zt:klvtvt)'

Since E(L 1, 5,1) = O(4) and LFAFs = 0, (1), Var(: 1, futy) = O(N7Y).
Thus, +FAVx = O, (N~'/2) and then LI FAVy = O, (N~'/?), under Assumption 3
that I'; is bounded.

For the second term T~Y2V/\Vy = T2V Va,

1 _ 1 1
T AVa = N iaVia + TVZAV—zAa

where V_; o = & Z] Lizj Via. It’s obvious that LV/\Via = O, (1) uniformly over i

and then —V/\

tion 3 and for the I row of V/\V_; Adenoted by ViaVoina

Via =0, (—) Since V/y and V_i A are independent under Assump-

sup||Var(TVisVeg a)l| = sup, [Var(T™ S8, Vi Vi)l
N R
<E(|T7 0, wenl Dsup BT S, VaeVial -

Under Assumption 9, sup, E(||7~ 121: w Vi Vi) = O(1) and E(HT—lzf?kl@t@tH) _
O (N7Y). Thus, sup; Var (£VjaV_ia) = O (N7') and then V/\V_; o = O, (N7V/2).
We obtain

1 _
FViaVa = 0y (NT) + 0, (N71%) = 0, (N71%) .
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Lastly, =X/\Vx = O, (N71/2).
According to Xa = Fal + Vi,
SXAVy = ZIEAV + VAT,
T T
Since 7 I"FAVy = O, (N7V2) and 2VAVyx = O, (N71), thus, £ X\ Vi = O, (N~1/2).
We lastly conclude +Z/\Vyx = O, (N7'?). LZ,Vu = O, (N7V?) is proved

similarly.

Lemma 4. Under Assumptions 1-10 and 12, uniformly on K (Cy)

(l) sz\il (522 611) Z/AMZ * = O (\/T¢N71) + Op (T ¢JI\<[1)7

(i) S i Moy Zia (ZiaMzy Zin) ™ ZiaMzyeiy = Oy (N) + O, (T);
(1) S5, €3 Mz Zin (Zia Mz Zin) ™ ZiaMzielo = Op (N) + Oy (1),

Proof of Lemma 4. (i) since ¢}, = i — 1" (TI) (k1) efp = ik —

VaI/(TI) "'y, for the interval [k) + 1,ko]. Plugging the expression of &}, into
Sty (B2 = 011) Zia Mz, €5y gives

Sy (02 = 61) Zia Mz, €ie

=" 1 (612 — 1) ZinEin

- Zf\;(ai? zl) Z/AV*F/(FF) V1

+ 30 B2 — 000) Zin Zik (Zige Zie) ™ gl

— 31612 = 00) Zin Zige(Zige Zide) ™ Zig VeI (TT') ;.

For the first term, by Lemma 3(ii) Assumption 4,
Zé\;l((slg — 5i1)/Zz‘,A5i* = Op <\/ ¢N,1> Op <ﬁ) = Op <\/T¢N71> .

For the second term, by Lemma 3(iv) and Assumptions 3 and 4,
S (B = 60) ZVal' (T 93 = 0, (Vowa ) O, (TN 12)

( ¢1/2 1/2) _

For the third term, by Lemma 3(i) (ii) and Assumption 4,

TY 1 (62 = 00) (T 7' Zin Zia (T2 213 Zige) (T Zigzine) = O, (\/ ¢N,1> :
For the fourth term, by Lemma 3(i) (iv) and Assumptions 3 and 4,

VT L (812 = 60) (T ZinZia (T2 Zige Zige )™ (T ZLy Va )T (TTY) s
—7120, ( 1/2) 0, (N"Y?) =0, <T1/2(Z5]1\?’21N71/2> .
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Thus,

N
> (0 = 0u) ZinMazuin = Oy (V/Twa) + O (TONINT?)
i=1

+0, (Vo) +0, (T2 3N12)
:O <T1/2 1/2) +0 (T¢1/2 1/2).
(ii) Since &}, = &; — v, L"(I'T") "Ly, in interval [kY + 1, ko],
EZ*MZ Z (ZZ{AMZi*ZiA)_lzz(AMZi*e*

_EQ*MZ“-ZiA(Zz{AMZi*ZiA)_lzz{AMZi*‘_/*f‘/(l:‘f‘,)_lfyli
_71i<FF/)71FV;MZi*ZiA(Zz{AMZi*ZiA)ilzZ(AMZi*gi*
(O T TVae Mz, Zin(Zia Mz, Zin) ™ Zin Mz, VaI'(FT) " i
Since My, Zin(T ' ZIA\Mz,, Zin) ' ZiAMg,, is positive semidefinite,
gg*MZz'*ZiA(Zz{AMZi*ZiA)_IZz{AMZ«;*gi* > 0.
In addition, |k; — kY| is bounded on K (C},), by Lemma 3(i) (ii),
1
NZL( TRl My Zin) (T Zig My, Zin) (TP ZiA My i) = O (1) .
Thus, for the first term,
S (TPl My Zin ) (T Zia My, Zin) NI 72 ZiA My, 2i%) = Op (N) .

For the second term, by Lemma 3(i)(ii)(iv) and Assumption 3,

VTSN (T2, My, Zin) T Zia My, Zin) (T Zia Mz, Vi )T/ (TT') "Ly
—VTO0,(1)0, (1) Op (N"2) 0, (\/N) ~0, (ﬁ) |

For the third term, by Lemma 3(i)(ii)(iv) and Assumption 3,

VTSN 71, (CT) (Vi My, ZiaT™Y)
X (T ZIANMy,, Zin) (T ZI\ My, cix)
=0, (VT) 0p (N2 0,(1)0,(1) 0, (VN) = 0, (VT).
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For the fourth term, by Lemma 3(i)(iv) and Assumption 3,

Ty (CT) (T WV My Zin ) (T ZiaA My, Zin) ™!
x (T~ ZAMZ*V*)FI(FF) Y1
=T0, (N)Op (N/?) 0, (1) Op (N"/?) = 0, (T).

Thus,
Za WMz Zin (ZiaMzy Zia) ™ ZiaMzaziy = Op(N)+0, (VT)+0, (VT)+0, (T)

(iii) can be proved in the same way as (ii).
Lemma 5. Under Assumptions 1-5, 7, 8, and uniformly over K (C}) and for
eachi=1,..,N,as (N,T) - c©
() 117V (Y, k3) M r 1)V (KL, )| = Op(N 1), (|71 (RY, ) Mg o ) Vi (KT, k3) || =
Op(1)
() || 7F (KD, B9) Mg ro a9 F (KT, KS)I| = Op (N71), [ 75 (KR, k3) Mg o ) F (KD, )| =
OP(N_1/2)§
(i) i) 117 (K9, K9)'eill = Oplh) + Opl( ), 1V (k0. KYFO(KY, k)| = &
(iv) [|7F” (K, k)il = Op(1).
Proof of Lemma 5. (i) Since Mx 0 1) = Mo 19 19
VKD, ) Mgy a0y V (KD, B9) = 7 (RS, K) Mo g )V (RS, S
—%ww&WM@wwnnww&

+ fvl(k?vk3> [MfFO(k?,kO) Mgogo xg) | V (K7, 3).
We first analysis the first term,
1- _
HTV/(]‘C% k9) Moo k) V (K9, k9) |

1 - _

HFM%WMMHW)WWWkMMWWf%W%w%W%@m
= 0,(37) + 0y 7)04(5) = Oyl50)

Next, for the second term, we can follow the P.12 and equation (S32) of the Appendix
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in Karabiyik et al.(2017) to show that

V (kY. k||

1_- _ 1_-
||?V’(k{’, k) [MI@O(kfg,kg) — Moo )| V (KL, k3)|| = ||?V’(k§’, ’fg)PVE(ml+l>q

= Opl) + 0N ) + O, )
— Onl3).

Thus, we obtain (i) and (ii) can be proved similarly. (iii) and (iv) are obvious

and then omitted.
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