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Abstract

Nonstationary panels have been widely used in empirical studies in eco-

nomics, especially in macroeconomics and finance. This paper considers mul-

tiple structural changes in nonstationary heterogeneous panels with common

factors. Kapetanios, Pesaran, Yamagata (2011) showed that unobserved non-

stationary factors can be proxied by cross-sectional averages of observable data.

This means that unobserved error factors can be treated as additional regres-

sors, and different break points in slopes and error factor loadings can be

considered as multiple breaks in linear regression models with panel data. We

generalize the least squares approach by Bai and Perron (1998) to nonstation-

ary panels and show that the break points in both slopes and error factor

loadings can be consistently estimated for two important cases involving i)

nonstationary factors and ii) nonstationary regressors considered by Phillips

and Moon (1999). Monte Carlo simulations are conducted to study the per-

formance of the main results in finite samples. We illustrate our methods

with an empirical example finding a significant change in the effect of

international R&D spillovers on domestic total factor productivity

in OECD countries in 1992, and we attribute it to the accelerated

globalization starting from the early 1990s.
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1 Introduction

Nonstationary panel data models allowing for cross-sectional dependence using

a factor structure in the errors continue to be the focus of a lot of theoretical as

well as empirical studies in econometrics. Hsiao (2018) provides a very detailed

and insightful review of the main modeling and estimation approaches in the factor-

augmented panel data literature. Feng and Kao (2020) also give a textbook treatment

of this subject focusing on three main approaches for the factor-augmented panel

data models. They include Pesaran’s (2006) common correlated effects (CCE), Bai’s

(2009) iterated principal components (IPC), and the likelihood approaches proposed

by Bai and Li (2014). More recently, the transformed approach developed by Hsiao,

Shi, Zhou (2021) shows very good properties in dealing with error factors in panel

data models.

This paper contributes to the literature of nonstationary panels with common

factors by allowing for structural breaks in the slopes. It is motivated by Bai and

Kao (2006) who consider a panel cointegration model with stationary factors, which

are allowed to be correlated with the regressors.
√
nT -consistent fully modified

(2sFM) estimators of the slope parameters are derived. In a panel cointegration

model with nonstationary factors considered by Bai, Kao and Ng (2009), fac-

tors are treated as parameters, and the dependent variable cointegrates

with the regressors and factors. The IPC approach is applied to deal

with unobserved factors, as in Bai (2009), and the
√
nT -consistent contin-

uously updated bias-corrected (CupBC) and continuously updated fully

modified (CupFM) estimators of the slope parameters are proposed. Re-

cently, Huang, Jin, and Su (2020) and Huang, Jin, Phillips, Su (2021) introduce the

heterogeneity, modeled as a latent group structure in the slope parameters of the

panel cointegration model with nonstationary factors, thus adding two features of

heterogeneity and cross-section dependence in the nonstationary panel literature. A

penalized principal component estimation, which is an iterative procedure between

penalized regression and principal component analysis (PCA), is proposed to con-

sistently estimate group membership and the slope parameters. Different from the

homogeneous panel literature considered above, Kapetanios, Pesaran, and Yamagata

(2011, KPY hereafter) estimate a model of heterogeneous panels with nonstationary

factors. They find that the CCE approach proposed by Pesaran (2006) is still valid
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for I(1) factors. In addition, Holly, Pesaran and Yamagata (2010) apply these meth-

ods to examine empirical features of the US housing markets.1

Following Huang et al. (2021) and Dong et al. (2021), this paper adds heterogene-

ity to the literature by considering multiple structural changes in the nonstationary

panels with common factors. Specifically, we consider multiple breaks in the slopes

and the error factor loadings in the heterogeneous panels with nonstationary regres-

sors and factors. As such, this paper enriches the literature of nonstationary panels

by accommodating two additional empirical features of multiple structural changes

and cross-sectional dependence. As in Pesaran (2006) and KPY, unobserved non-

stationary factors can be proxied by the cross-sectional averages of observable data.

Thus, unobserved error factors can be treated as additional regressors, and differ-

ent break points in slopes and error factor loadings can be considered as multiple

breaks in linear regression models with panel data. Therefore, we generalize the

least squares approach by Bai and Perron (1998) to nonstationary panels and show

that the break points in both slopes and error factor loadings can be consistently

estimated. In addition, different from KPY, we also consider the case of nonstation-

ary regressors after the CCE transformation. This model can be considered as an

extension of Phillips and Moon (1999, Section 5) to the case of allowing for an error

factor structure and multiple breaks in slopes. Similarly, a T -consistent estimator of

the heterogeneous slope parameters is obtained.

Estimation of structural breaks in panels has attracted a lot of attention since

Bai’s (2010) panel mean-shift model. Kim (2011) considers a common break in

a deterministic trend model for large panels with nonstationary or stationary er-

rors. Baltagi, Feng and Kao (2016, 2019, BFK hereafter) extend Pesaran’s (2006)

heterogeneous panels to the cases of common breaks in slopes with exogenous and

endogenous regressors. Baltagi, Kao and Wang (2015) apply Bai’s (2009) IPC

approach to deal with interactive fixed effects in the errors of a hetero-

geneous stationary panel with a common break in the slopes. Baltagi, Kao

and Liu (2017) look at the estimation of a break point in homogeneous nonstationary

panels with only one regressor and no error factor structure. These models mainly

focus on the case of a single common break. Li, Qian and Su (2017), Qian and

Su (2016) propose the adaptive group fused LASSO (AGFL) in panels with multi-

1Dong, Gao and Peng (2021) propose a general model of nonstationary panels by considering
varying-coefficient slopes and factor loadings.
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ple breaks in slopes, with and without interactive effects, respectively.2 Lumsdaine,

Okui and Wang (2023) consider the estimation of panel group structure models with

structural breaks. Kaddoura and Westerlund (2023) study panel data models with

multiple structural breaks when T is fixed.3

Recently, Karavias, Narayan and Westerlund (2023) consider a single break in

stationary homogeneous panels with interactive effects, and Ditzen, Karavias and

Westerlund (2023) extend the analysis to the case of multiple breaks. Unlike these

two papers, we focus on nonstationary heterogeneous panels and nonstationary fac-

tors with multiple breaks. In addition, multiple breaks in factor loadings are also

considered in our paper. Thus, our model can be applied to empirical research using

aggregate level data over a long period, e.g., the international R&D spillover model.

This paper is also related to the literature on structural instability in factor

models since Stock and Watson (2009), and extensively studied by Breitung and

Eickmeier (2011), Chen, Dolado and Gonzalo (2014), Yamamoto and Tanaka (2015),

and Cheng, Liao and Schorfheide (2016). Recent advancements in this direction also

include Baltagi, Kao and Wang (2017), Bai, Han and Shi (2020), and Duan, Bai and

Han (2023), Baltagi, Kao and Wang (2021), Ma and Tu (2023).

The paper is organized as follows. Section 2 introduces the model of nonsta-

tionary panels with common factors and multiple structural changes in slopes and

error factor loadings. Section 3 presents the main ideas for estimation. Asymptotic

properties of the estimators are derived in Section 4. In Section 5, we consider the

case of additional nonstationary components in regressors. Monte Carlo simulations

are conducted in Section 6 and Section 7 displays an empirical application to inter-

national R&D spillovers. Section 8 provides concluding remarks. The mathematical

proofs are relegated to the Appendix.

Notation: For any matrix or vector A, the Frobenius norm of A is defined as

2There have been important work on estimating and testing for multiple structural changes in
the time series literature, including Bai (1997), Bai and Perron (1998, 2003), Qu and Perron (2007),
Kejriwal and Perron (2008), Maheu and Song (2018), Oka and Perron ( 2018), Bergamelli et al.
(2019), Pang et al. (2021), to name a few.

3The multi-break homogeneous panel data model with fixed T considered by Kad-
doura and Westerlund (2023) could be very useful in empirical studies. When T is
fixed, the difference between stationary and nonstationary data is irrelevant for the
proofs. Different from their model, we take a different approach by considering long
panel with nonstationary data. Thus, we connect our paper with the nonstationary
panels literature. When T is large, nonstationary data is treated differently from sta-
tionary data in the proofs. Consequently, the technical framework used is different,
including assumptions, convergence rates and proofs.
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∥A∥ =
√
tr(AA′). (N, T ) → ∞ denotes N and T tend to infinity simultaneously. [·]

is the greatest integer function. Stochastic processes such as Brownian motion W (r)

on [0, 1] are written as W, integrals such as
∫ d

c
W (r)dr as

∫ d

c
W and stochastic inte-

grals
∫ d

c
W (r)dW (r) as

∫ d

c
WdW. Bω denotes the Brownian motion with covariance

matrix Σω. ”⇒” denotes weak convergence.

2 Model

By extending Pesaran’s (2006) influential framework to the nonstationary case,

KPY (2011) consider the following heterogeneous panel regression with nonstationary

factors:

yit = x′itβi + γ′ift + εit, i = 1, ..., N ; t = 1, ..., T, (1)

where xit is a p × 1 vector of explanatory variables with heterogeneous slopes βi,

εit is the idiosyncratic error, independent of xit, and γi is the corresponding loading

vector.4 The q × 1 vector of unobserved factors ft follow I(1) processes,

ft = ft−1 + φt, (2)

φt is the idiosyncratic error. xit follow an I(1) processes under the Assumption of

commonly correlated effects,

xit = Γ′
ift + vit, (3)

where Γi is an q × p factor loading matrix. vit is a p × 1 vector of disturbances.

Thus, yit is also nonstationary. KPY show that the CCE approach is robust to

nonstationary factors. vit is assumed to be I(0) as in KPY, in what we call Case

1 in this and the next section. Case 2 assumes vit to be I(1) and this is studied in

Section 5.

This paper generalizes KPY’s model (1) above by considering multiple breaks in

βi:

yit = x′itβi(K0) + γ′ift + εit, i = 1, .., N ; t = 1, ..., T. (4)

Common breaks in the slopes βi(K0) could arise due to technological progress or ma-

jor policy shifts in a long time horizon. Assume there are m0 breaks in the slope pa-

4The fixed effects model can be considered as a special case when the first component of xit

is 1 and the other components of the slope parameters βi are homogeneous. We examine the
performance of the break estimators in a fixed effects model in the Monte Carlo experiments.
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rameters.5 As in Bai and Perron (1998), K0 denotes anm0-partition (K0,1, ..., K0,m0),

and the value of the slopes βi(K0) vary across m0 + 1 different regimes,6 i.e.,

βi(K0) =


βi1, t = 1, ..., K0,1,
...

βi,m0+1, t = K0,m0 + 1, ..., T.

This model generalizes the analysis of stationary panels with a single break in

slopes by BFK (2016, 2019) to nonstationary panels with multiple structural breaks.

Thus, additional technical challenges are involved in the derivations of asymptotic

properties of estimators with nonstationary data in the case of multiple breaks.

Similarly, factor loadings γi could also suffer from structural changes, often seen

in the macroeconomic literature (Stock and Watson, 2009). Assume there are m1

breaks in the error factor loadings with an m1-partition K1 = (K1,1, ..., K1,m1),

γi(K1) =


γi1, t = 1, ..., K1,1,
...

γi,m1+1, t = K1,m1 + 1, ..., T.

The model becomes

yit = x′itβi(K0) + γi(K1)
′ft + εit, i = 1, .., N ; t = 1, ..., T. (5)

In addition, the nonstationary ft and xit follow processes (2) and (3). Model (5)

includes model (4) above as a special case. We suppress the superscript 0 in the true

values of K0 and K1 for now. Breaks K1 in error factor loadings are allowed to have

overlaps with breaks K0 in the slopes. Different from breaks K0 in slopes to model

the changes in long-run structural relationship between y and x, breaks K1 in error

loadings γi can be considered equivalent to the instability of the variance of errors

γ′ift + εit in (4), or changes in the error factor variance with constant loadings.

In the special case ofm0 = 2,m1 = 1, of model (5), we assumeK0,1 < K0,2 < K1,1,

without loss of generality. Thus, three breaks K0,1, K0,2, K1,1 split the sample into 4

regimes:

yit =


x′itβi1 + γ′i1ft + εit, t = 1, ..., K0,1

x′itβi2 + γ′i1ft + εit, t = K0,1 + 1, ..., K0,2

x′itβi3 + γ′i1ft + εit t = K0,2 + 1, ..., K1,1

x′itβi3 + γ′i2ft + εit, t = K1,1 + 1, ..., T,

(6)

5To accommodate the case of partial structural changes in the slopes considered by Bai and
Perron (1998), w′

itαi can be added to the right-hand side of (4) to denote the regressors and their
corresponding slopes that are constant over time.

6In this paper, we assume common breaks for the individual series in the panel. Kim (2014)
and Smith (2024) studied the case of heterogeneous breaks in the panel. However, to handle the
unobserved error factor structure in the model, we follow KPY’s CCE approach, which is not
applicable to heterogeneous breaks.
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each of which can be considered the same as KPY. This is also the case when there

are multiple breaks in slopes and error factor loadings, i.e., m0 > 1, m1 > 1. We

follow KPY and use the CCE approach to deal with the unobserved nonstationary

factors ft. In this model, the parameters to be estimated include the slopes βi(K0)

and the break points K0, K1.

Like estimating break point K0 in slopes, estimating K1 in factor loadings is

equally important. As pointed out in the growing literature since Stock and Watson

(2009), the structural instability in the factor structure could have implications for

the accuracy of forecasting and number of estimated factors. In our model (5), ig-

noring the break K1 in γi could bias the estimates of the factor loadings in empirical

studies, e.g., US housing markets by Holly, Pesaran and Yamagata (2010). In addi-

tion, when the focus is on εit, e.g., testing for remaining cross-sectional dependence

in εit (Juodis and Reese, 2022), estimating K1 is necessary for obtaining a consistent

estimate of εit.

Compared with Bai, Kao and Ng’s (2009) model of panel cointegration with

nonstationary factors, our model (5) adds two new empirical features: heterogeneous

slopes and structural breaks in slopes and factor loadings. Structural breaks here

can be regarded as a different way of modeling parameter heterogeneity from the

latent group structure considered by Huang et al. (2021). Besides, we apply the CCE

approach to deal with unobserved factors, instead of the IPC approach used in the two

papers above. In addition, different from BFK’s (2016, 2019) models of a common

structural break in heterogeneous panels with exogenous and endogenous regressors,

this paper focuses on multiple breaks and nonstationary factors and regressors. In

line with Bai, Kao and Ng (2009), ft are treated as additional explanatory variables,

instead of an error component in (5). Thus, K0 and K1 are considered as multiple

breaks in a linear regression and are estimated by least squares as proposed by Bai

and Perron (1998).

As in the literature on nonstationary panels with factors, the major challenge in

estimating our model (5) lies in the unobserved factors. In this paper, we adopt the

CCE approach proposed by Pesaran (2006) and examined by KPY in the case of

nonstationary factors. To simplify the analysis, we follow Stock and Watson’s (2016,

p.429) idea of using the cross-sectional averages of xit, x̄t =
1
N

∑N
i=1 xit, instead of

those of yit and xit, to proxy for ft in this paper.7 The cross-sectional average of xit

7Karavias et al. (2023) use this proxy for ft. BFK (2019) focus on estimating a single break
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in (3),

x̄t = Γ̄′ft + v̄t, Γ̄ =
1

N

N∑
i=1

Γi and v̄t =
1

N

N∑
i=1

vit.

When Γ̄ is of full rank (q ≤ p), like OLS,

ft = (Γ̄Γ̄′)−1Γ̄(x̄t − v̄t). (7)

Since v̄t → 0 in probability as N → ∞, it is also asymptotically valid to use x̄t as

observable proxies for nonstationary ft,

ft − (Γ̄Γ̄′)−1Γ̄x̄t
p→ 0 as N → ∞. (8)

Hence, the idea of CCE is being used for nonstationary factors in each regime.8

Using (7) for ft, (5) can be written as

yit = x′itβi(K0) + f ′
tγi(K1) + εit

= x′itβi(K0) + [(Γ̄Γ̄′)−1Γ̄ (x̄t − v̄t)]
′γi(K1) + εit

= x′itβi(K0) + x̄′tγ
∗
i (K1) + ε∗it, (9)

where γ∗i (K1)
p×1

= Γ̄′(Γ̄Γ̄′)−1γi(K1)
q×1

and ε∗it = εit−v̄′tΓ̄′(Γ̄Γ̄′)−1γi(K1). Thus, by proxying

ft with observables, equation (9) can be regarded as a panel data regression with

multiple common breaks K0,K1 in slopes βi and γ
∗
i . In the special case of no breaks

K1 in the loadings of model (4), γ∗i (K1) in equation (9) becomes γ∗i = Γ̄′(Γ̄Γ̄′)−1 γi.

In this paper, we consider the general model (5) and use least squares proposed by

Bai and Perron (1998) to estimate break points (K0,K1), slopes βi(K0) and their

cross-sectional averages.

Remark 1: Breitung and Eickmeier (2011) point out that the structural breaks

in the factor loadings can be captured by inflating the number of factors in the PCA

estimation. However, the inflated number of factors may fail the rank condition

required by the CCE approach above. This implies that using the cross-sectional

averages does not necessarily capture the inflated number of factors. As shown in

the next section, our estimator of K0 and βi(K0) can be robust to the breaks K1 in

point in heterogeneous slopes using the cross-sectional average (yit, xit) to proxy for ft and treat
the error factor structure as nuisance parameters. This paper also estimates break points in error
factor loadings K1 along with K0. To simplify the analysis, we use the cross-sectional average xit

to proxy for ft. In additional Monte Carlo simulations, we use the cross-sectional average (yit, xit)
to proxy for ft and similar results are obtained.

8As in KPY, when the rank condition holds, there is no need to estimate the number of error
factors.
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error factor structure in a simultaneous estimation approach. Identifying the breaks

K1 can be separately achieved if the rank condition is satisfied with inflated number

of factors.9

3 Estimation

To simplify notation, let zit
2p×1

= (x′it, x̄
′
t)

′, δi
2p×1

(K0,K1) = (βi(K0)
′, γ∗i (K1)

′)′. Thus,

equation (9) above can be written as

yit = z′itδi(K0,K1) + ε∗it. (10)

We rearrange the m0 + m1 breaks K0,K1 in time line as {K0} = {K0,K1} =

{k01, k02, ..., k0m} with m = m0 +m1. Superscript 0 denotes for true values of breaks.

After reparameterization, model (10) can be considered as a panel data regression

with multiple structural changes in slopes:

yit = z′itδij + ε∗it, t = k0j−1 + 1, ..., k0j , (11)

where j = 1, ...,m+ 1, and k00 = 0, k0m+1 = T .

Remark 2: Equation (11) can be considered as a panel data version of the

multiple structural change model considered by Bai and Perron (1998) using non-

stationary data. It also extends the stationary panel data model with one common

break in BFK (2016) to the case of multiple common breaks with nonstationary data.

Remark 3: The intuition on identifying break points in this literature apply

here as well. First, as pointed out by Bai (1997) and Bai and Perron (1998), the

key information to identify the break points in time series regressions depend on

the break magnitude and the variance of the regressors relative to the variance of

the errors. Second, in panels with mean shifts or (trend) stationary regressors, Bai

(2010), Kim (2011) and BFK (2016) show that the break magnitude increases with

N under the common break assumption. Thus the break point can be consistently

estimated in panels as (N, T ) → ∞. Third, Baltagi, Kao and Liu (2017), Pang

Du and Chong (2021) show that using nonstationary regressors, the variance of the

regressors increases with T , implying that it is easier to identify break points in

regressions using nonstationary regressors than stationary regressors.

9In this case, we can use partitioned regression to consistently estimate K0 and βit(K0) first

when the rank condition is satisfied with a small number of factors. After K̂0 and β̂it(K̂0) are
obtained, PCA or other methods can be applied to identify the factor structure and the breaks in
loadings in errors f ′

tγit(K1) + εit estimated by yit − x′
itβ̂it(K̂0).
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Define Yi = (yi1, · · · , yiT )′ , δi
2p(m+1)×1

= (δ′i1, ..., δ
′
i,m+1)

′, Zi(K0)
T×[2p(m+1)]

= diag(Zi1, ..., Zi,m+1)

with Zij = (zi,k0j−1+1, ..., zi,k0j )
′, j = 1, ...,m + 1 and ε∗i = (ε∗i1, · · · , ε∗iT )

′. Thus, equa-

tion (11) can be written in matrix form: for i = 1, ..., N,

Yi = Zi(K0)δi + ε∗i (12)

For possible breaks K = m-partition (k1, ..., km), the OLS estimator of δi is δ̂i(K) =

[Zi(K)′Zi(K)]−1 Zi(K)′Yi, and the corresponding sum of squared residuals is

SSRi(K) =
[
Yi − Zi(K)δ̂i(K)

]′ [
Yi − Zi(K)δ̂i(K)

]
.

Thus, the OLS estimator of K0 = (k01, ..., k
0
m) is defined as

K̂ = (k̂1, ..., k̂m) = arg min
(k1,...,km)

1

NT

N∑
i=1

SSRi(K). (13)

Due to the computation complexity Op (T
m) of the grid search algorithm, obtain-

ing (k̂1, ..., k̂m) by solving (13) is generally very time consuming when m ≥ 3 and T

is large. In practice, we recommend the dynamic programming algorithm proposed

by Bai and Perron (2003).10

In this paper, we assume that m is known. This assumption can be relaxed

by following the idea of sequential estimation based on parameter-consistancy tests

by Bai and Perron (1998). Alternatively, m can be determined by an information

criterion approach with a penalty factor related to m as in Boldea et al. (2020) who

consider a fixed effects panel data model with multiple breaks.

Next, we consider the estimation of βi(K0). Denote Xi
T×p

= (xi1, · · · , xiT )′ and

X̄
T×p

= (x̄1, · · · , x̄T )′. Stacking the time dimension of equation (9) in matrix form

gives

Yi =

 x′i1βi1
...

x′iTβi,m0+1

+

 x̄′1γ
∗
i1

...
x̄′Tγ

∗
i,m1+1

+ ε∗i .

Reparameterizing X i(K0)
T×[(m0+1)p]

= diag (Xi1, Xi2, · · · , Xi,m0+1) with Xi1
K0,1×p

= (xi1, ..., xi,K0,1)
′,

Xi2
(K0,2−K0,1)×p

= (xi,K0,1+1, ..., xi,K0,2)
′, · · · , Xi,m0+1

(T−K0,m0 )×p

= (xi,K0,m0+1, ..., xiT )
′ and bi

[(m0+1)p]×1
=

(β′
i1, · · · , β′

i,m0+1)
′ gives

Yi = X i(K0)
T×[(m0+1)p]

bi
[(m0+1)p]×1

+ X(K1)
T×[(m1+1)p]

gi
[(m1+1)p]×1

+ ε∗i , (14)

10In the simulations and empirical application, our selection range of breaks is 0.1T < k1 < · · · <
km < 0.9T. To avoid the singularity problem, we also impose the restriction of minj kj − kj−1 > p
for j = 2, · · ·m.
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where X(K1)
T×[(m1+1)p]

= diag
(
(x̄′1, ..., x̄

′
K1,1

)′, · · · , (x̄′K1,m1+1, ..., x̄
′
T )

′
)

and gi
[(m1+1)p]×1

=

(γ∗′i1, · · · , γ∗′i,m1+1)
′.

In equation (14), we focus on the individual slopes bi. Hence, we perform a parti-

tioned regression that removes the second term X i(K1)gi.
11 This partitioned regres-

sion on equation (14) yields:

b̂i = b̂i

(
K̂0, K̂1

)
=
[
X i(K̂0)

′MX(K̂1)
X i(K̂0)

]−1

X i

(
K̂0

)′
MX(K̂1)

Yi, (15)

where MX(K̂1)
= I − X(K̂1)[X(K̂1)

′X(K̂1)]
−1X(K̂1)

′. Similarly, the mean of bi can

also be estimated consistently by the following mean-group estimator

b̂MG =
1

N

N∑
i=1

b̂i =
1

N

N∑
i=1

[
X i(K̂0)

′MX(K̂1)
X i(K̂0)

]−1

X i(K̂0)
′MX(K̂1)

Yi. (16)

In the case of no breaks in error factors considered in equation (4), equation (14)

reduces to

Yi = X i(K0)
T×[(m0+1)p]

bi
[(m0+1)p]×1

+ X̄
T×p

γ∗i
p×1

+ ε∗i ,

thus

b̂i = b̂i

(
K̂0

)
=
[
X i(K̂0)

′MX̄X i(K̂0)
]−1

X i

(
K̂0

)′
MX̄Yi,

where MX̄ = I − X̄
(
X̄ ′X̄

)−1
X̄ ′ and the corresponding mean-group estimator be-

comes
1

N

N∑
i=1

[
X i(K̂0)

′MX̄X i(K̂0)
]−1

X i

(
K̂0

)′
MX̄Yi.

The partitioned regression (15) suggests that the CCE transformed regressors

MX(K̂1)
X i(K̂0) become stationary after partialling out I(1) ft in the case of stationary

vit. This leads to
√
T -consistent b̂i as shown in the next Section. By contrast, when

vit follows an I(1) process, MX(K̂1)
X i(K̂0) remains nonstationary. In this case, yit

and xit are cointegrated after dealing with the unobserved factors in each regime,

and T -consistency of b̂i can be obtained. This is different from the setup in KPY.

We will consider I(0) vit as Case 1 in Section 4, and I(1) vit as Case 2 in Section 5.

11If the structural breaks K2 exist in the loadings Γi, i.e., xit = Γ′
it(K2)ft + vit where Γit(K2) is

similarly defined as γit(K1). It is still asymptotically valid to use x̄t as proxies for the nonstationary
ft. We can simultaneously estimate the breaks (K1,K2) as in Section 3, or we can ignore them if
the focus is on estimating K0 and the slopes, and the rank condition still holds after using a bigger
set of factors to represent breaks in factor loadings. For simplicity, we only consider the case of no
breaks in Γi in this paper.
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4 Main Results

4.1 Assumptions

The following Assumptions are needed for establishing the asymptotic properties

of the breaks and slope estimators above.

Assumption 1 For j = {1, · · · ,m}, k0j =
[
λ0jT

]
with 0 < λ01 < · · · < λ0m < 1.

Assumption 2 Rank(Γ̄) = q ≤ p.

Assumption 3 Factor loadings γi (K1) and Γi are independent and identically dis-

tributed (IID) across i, and independent of εjt, vjt and ft for all i, j, t. Assume

γi(K1) = γ(K1) + ηi = ηi +


γ1,
...

γm1+1,

1 ≤ t < K1,1

...

Km1,1 + 1 < t ≤ T

with ηi ∼ IID(0,Σγ)

and vec(Γi) = vec(Γ) + ξi, ξi ∼ IID(0,Ωξ), i = 1, ...N, where the means γ(K1), Γ

are non-zero and fixed and the variances Ωη, Ωξ are finite.

Assumption 4 For i = 1, ..., N , bi = b+vb,i, vb,i ∼ IID(0,Σb), where b =
(
β′
1, β

′
2, · · · , β′

m0+1

)′
,

vb,i = (v′β1,i
, v′β2,i

, · · · v′βm0+1,i
)′ and Σb = diag(Σβ1 ,Σβ2 , · · · ,Σβm0+1) for i = 1, 2, ..., N ,

where ∥b∥ < ∞, ∥Σb∥ < ∞, and the random deviations vb,i are independent of xit

and εjt for all i, j and t.

Assumption 5 In the nonstationary factor process f = ft−1 + φt, φt is a vector

of L2+ϑ bounded process for some ϑ > 0,such that E[||φt||2+ϑ] < ∞, and

stationary near epoque dependent process of size 1/2, on some α-mixing process of

size −(2 + ϑ)/ϑ and independent of vjt and εjt for all i, j, t.

Assumption 6 λ00 = 1/T and for j = {1, · · · ,m}, λ0j ∈ (0, 1) , and λ0m+1 = 1.

Matrices 1
T 2

[λ0
j+1T ]∑

t=[λ0
jT ]

ftf
′
t and 1

NT 2

N∑
i=1

[λ0
j+1T ]∑

t=[λ0
jT ]

zitz
′
it have minimum eigenvalues bounded

away from zero in probability.

Assumption 7 (i) The disturbances εit, i = 1, ..., N, are cross-sectionally indepen-

dent; (ii) For each series i, εit is independent of φt′ for all t and t′; (iii) errors εis

and vjt are independent for all i, j, s, t; (iv) εit is a stationary process with abso-

lute summable autocovariances, such that εit =
∑∞

l=0 ailζi,t−l, where {ζit, t = 1, ..., T}
are IID random variables with zero mean and have a finite fourth-order moments.
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Assume 0 < V ar(εit) =
∑∞

l=0 a
2
il = σ2

i < ∞. (v) for the T × 1 vector εi =

(εi1, εi2, · · · , εi,T )′, V ar(εi) = Σε,i and 0 < ∥Σε,i∥ <∞.

Assumption 8 (i) The disturbances vit, i = 1, ..., N, are cross-sectionally indepen-

dent; (ii) For each series i, vit is independent of φt′ for all t and t′; (iii) vit are

linear stationary processes with zero mean and absolute summable autocovariances,

vit =
∑∞

l=0 Ξilϱi,t−l, where (ζit, ϱ
′
it )′ are (p + 1) × 1 vectors of IID random vari-

ables with variance-covariance matrix Ip+1 and has a finite fourth-order moments,

and V ar(vit) =
∑∞

l=0 ΞilΞ
′
il = Σv,i, and 0 < ∥Σv,i∥ < ∞. (iv) lim

N→∞
1
N

∑N
i=1 Σv,i is

nonsingular.

For j = {1, · · · ,m}, define ϕN,j =
∑N

i=1(δi,j+1− δij)
′(δi,j+1− δij) in equation (11)

as the magnitude of common breaks in panels.

Assumption 9 ϕN,j → ∞, T
N
ϕN,j → ∞, as (N, T ) → ∞ for j = {1, · · · ,m}.

Assumption 1 is common in the time series and panel data literature of structural

changes, e.g., Bai (1997), Bai and Perron (1998), Bai (2010), BFK (2016, 2019). It

rules out the case that true breaks happen on the boundary of the observed time

period. It also implies that there are sufficient number of observations between

breaks for large sample approximation. However, Bai (2010) pointed out that the

common breaks close to the boundary are allowed in a panel mean shift model when

T/N → 0. To simplify our proofs, we adopt this convenient assumption. We explore

the performance of our break estimator in the case of boundary breaks in Monte

Carlo experiments.

Assumption 2 on the rank condition guarantees that equation (7) is valid, see

Pesaran (2006) and KPY who discuss the situation of rank deficiency. This as-

sumption can be relaxed to accommodate more empirical situations. For example,

Karabiyik, Urbain and Westerlund (2019) consider the case of p < q. When p < q,

additional combinations of regressors (Karabiyik, Urbain and Westerlund, 2019) or

additional exogenous variables (Bai and Ng, 2010) should be included to proxy the

unobserved error factors. Karabiyik, Reese and Westerlund (2017) provide a

new analytical framework to address the problem that too many observ-

ables cause the second moment matrix of the estimated factors to become

asymptotically singular. Juodis, Karabiyik and Westerlund (2021) establish the

theory of pooled CCE, while the true number of common factors can be larger than

12



the number of estimated factors. Our theoretical results can be extended to the case

of rank deficiency by following the papers mentioned above. We will explore the per-

formance of the estimators in case that Assumption 2 is not satisfied in the Monte

Carlo simulations.

In Assumption 3, we assume that Γi and γi are independent, so the regressors

and the error factor loadings are uncorrelated. Different from Pesaran (2006), we use

the cross-section averages of regressors only to proxy the unobserved factors ft in

this paper, thus γi does not appear in equation (7) above, implying that whether γi

is correlated with Γi or not does not affect the rank condition. In addition, breaks

K1 in γi in Assumption 3 will not affect the rank condition as well.

Assumptions 4, 5 on the identification condition for the individual slopes

are borrowed from KPY. Under Assumptions 7 and 8, the idiosyncratic errors

εit and vit follow a general linear stationary process with heteroscedasticity and

autocorrelation for each i. Assumption 9 specifies the relationship between T/N and

the magnitude of breaks ϕN,j, j = 1, ...,m. ϕN,j can grow slower or faster than N,

depending on the relative rate of T/N. The condition on the magnitude of breaks

in Assumption 9 generalizes Assumption 2 in stationary panels considered by BFK

(2019) to the multiple breaks case.

Under these assumptions, we can show that the multiple breaks are estimated

consistently, as summarized in the following theorem:

Theorem 1 Under Assumptions 1-9, lim(N,T )→∞ P
(
k̂j = k0j

)
= 1, j = {1, · · · ,m}.

The rate of convergence and the distribution of the estimated structural breaks in

stationary or nonstationary homogeneous panels have been discussed by Bai (2010),

Baltagi, Kao and Liu (2017) and others. As pointed out by Bai (2010), Theo-

rem 1 implies a degenerate limiting distribution for k̂j. To obtain a non-degenerate

distribution, a different framework of shrinking magnitude of breaks is usually as-

sumed. Baltagi, Kao and Liu (2017) show the convergence rates of break estimators

in homogeneous cointegrated panels and stationary panel regression are Op(1/NT )

and Op(1/N), respectively, suggesting the benefit of using observations in the cross-

sectional dimension under the common break assumption in panels. In our model,

similar insights can be carried over. However, when the slopes are heterogeneous,

the derivation of convergence rate and limiting distribution of the break point esti-

mators is technically nontrivial. In addition, as shown in the following proposition,
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the convergence rate of k̂j is not required for the asymptotic distribution of the slope

estimators, so we leave it for future research.

Denote V i(K0) = diag (Vi1, Vi2, · · · , Vi,m0+1) with Vi1 = (vi1, ..., vi,K0,1)
′, Vi2 =

(vi,K0,1+1, ..., vi,K0,2)
′, · · · , Vi,m0+1 = (vi,K0,m0+1, ..., viT )

′. Given the consistency of es-

timated structural breaks K̂ above, we can obtain consistent estimators of the slope

parameters.

Proposition 1 Under Assumptions 1-9, as (N, T ) → ∞, and
√
T

N
→ 0, for

each i = {1, · · · , N},
√
T
(
b̂i − bi

)
d→ N

(
0,Σ−1

X,iΣXε,iΣ
−1
X,i

)
,

where ΣX,i = plimT→∞
1
T
V i(K0)

′V i(K0) and ΣXε,i = plimT→∞
1
T
V i(K0)

′Σε,iV i(K0)
′.

According to Lemma 6 in the Appendix, ΣX,i can be estimated by

1
T
X i(K0)

′MX(K1)
X i(K0), which can be easily computed when K0 and K1 are replaced

with their least squares estimates. It has a well-behaved probability limit when

T → ∞. Similarly, as in Pesaran (2006), KPY and BFK, a consistent Newey-West

type estimator of ΣXε,i can be obtained as

Σ̂Xε,i = Λ̂i0+
ω∑

j=1

(
1− j

ω + 1

)(
Λ̂ij + Λ̂′

ij

)
, Λ̂ij =

1

T

ω∑
t=j+1

eitei,t−jX it(K̂0, K̂1)X it(K̂0, K̂1)
′,

(17)

where ω is the window size,12 eit is the t
th element of ei =MX(K̂1)

Yi−MX(K̂1)
X i(K̂0)b̂i

and X it(K̂0, K̂1) is the t
th row ofMX(K̂1)

X i(K̂0). Thus, a consistent Newey-West type

estimator of Σ−1
X,iΣXε,iΣ

−1
X,i is given by[

1

T
X i(K̂0)

′MX(K̂1)
X i(K̂0)

]−1

Σ̂Xε,i

[
1

T
X i(K̂0)

′MX(K̂1)
X i(K̂0)

]−1

. (18)

Proposition 2 Under Assumptions 1-9, and (N, T ) → ∞,

√
N
(
b̂MG − b

)
d→ N (0,Σb) ,

where Σb can be consistently estimated by

1

N − 1

N∑
i=1

(
b̂i − b̂MG

)(
b̂i − b̂MG

)′
.

12In practice, the selection of the window size ω is important. Pesaran and Timmermann (2007)
propose the cross-validation methods for selection of a single estimation window in the presence of
breaks.
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This result suggests that Theorem 1 in KPY (2011) holds as if K0 and K1 were

treated as known. Similarly, a pooled estimator

b̂P =

[
N∑
i=1

X i(K̂0)
′MX(K̂1)

X i(K̂0)

]−1 N∑
i=1

X i

(
K̂0

)′
MX(K̂1)

Yi (19)

can be defined as in equation (20) in KPY (2011).13

5 Additional Nonstationary Components in the

Regressors

In this section, our analysis of nonstationary panels is extended to the case of both

nonstationary ft and vit. Idiosyncratic errors εit remain I(0). Compared with Section

5 of Phillips and Moon (1999), our model accommodates additional features of an

error factor structure and multiple breaks in slopes. In equation (3) xit = Γ′
ift + vit,

errors vit follow I(1) processes:

vit = vi,t−1 + ςit, i = 1, .., N, (20)

where ςit follows the assumption below:

Assumption 10 ςit, i = 1, ..., N , are cross-sectionally independent. For each i,

(i) ςit = Ψi(L)ϵit with ϵit is IID random variables with zero mean and has a finite

fourth-order moments; (ii) V ar(ϵit) = Σϵ,i = PiP
′
i , and Ψi(L) =

∑∞
j=0 ΨijL

j with∑∞
j=0 j ∥Ψij∥ <∞, and Ψi(1) =

∑∞
j=0Ψij.

Different from Case 1 of stationary vit considered in Section 4, in Case 2 of

I(1) vit, the CCE transformed regressors in the partitioned regression (15) remain

nonstationary. We will show that K̂ defined in equation (13) above are still consistent

and b̂i is T -consistent. In addition, different from Case 1, the restriction on the

relative diverging rate between T and N in Assumption 9 is not required here.

13Its limiting distribution can be proved in line with Theorem 2 of KPY:

√
N
(
b̂P − b

)
d→ N (0,ΣP ) .

ΣP can be estimated consistently by Σ̂P = Ψ̂∗−1R̂Ψ̂∗−1, where R̂ =
1

N−1

∑N
i=1

[
1
T Xi(K̂0)

′MX(K̂1)
Xi(K̂0)

] (
b̂i − b̂MG

)(
b̂i − b̂MG

)′ [
1
T Xi(K̂0)

′MX(K̂1)
Xi(K̂0)

]
and

Ψ̂∗ = 1
NT

∑N
i=1 Xi(K̂0)

′MX(K̂1)
Xi(K̂0).
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Theorem 2 Under Assumptions 1-8, 10, as (N, T ) → ∞, lim(N,T )→∞ P
(
k̂j = k0j

)
=

1, j = {1, · · · ,m}.

With an additional Assumptions 11 and 12 on φt and identifying bi below, respec-

tively, we obtain the following Proposition 3. In line with equation (5.8) in Phillips

and Moon (1999) in nonstationary heterogeneous panels without structural breaks

and error factors, for each i = 1, ..., N , b̂i is also super consistent in our model.

Assumption 11 φt is linear stationary process, (i) φt = Π(L)ut with µt, t =

1, ..., T , have a finite fourth-order moments; (ii) V ar(ut) = Σu = QQ′, and Π(L) =∑∞
j=0 ΠjL

j with
∑∞

j=0 j ∥Πj∥ <∞, and Π(1) =
∑∞

j=0Πj.

Assumption 12 1
T 2X i(K0)

′MX(K1)
X i(K0) is non-singular, and its inverse has a fi-

nite second-order moment.

Proposition 3 Under Assumptions 1-7, 9-12, for each i, T (b̂i−bi) converges weakly
to a non-degenerate distribution, as (N, T ) → ∞.

Intercept estimator is not included in b̂i above, and its convergence rate is
√
T

as in a cointegration model (Hamilton, 1994, p.588). The intercept can be wiped

out by adding a vector of ones to X(K̂1) in the MX(K̂1)
. The limiting distribution

of T (b̂i − bi) is complicated and inconvenient in practice. It is of a similar form to

Theorem 8 of Phillips and Moon (1999) and is reported in Appendix A.

In empirical applications of heterogeneous panels, the cross-section means of bi

are usually of interest, thus a popular estimator is either the mean-group estimator

or the pooled estimator. For the mean group estimator of b,

√
N
(
b̂MG − b

)
=

1√
N

N∑
i=1

vb,i+
1√
NT

N∑
i=1

[(
1

T 2
X i(K0)

′MX(K1)
X i(K0)

)−1
1

T
X i(K0)

′MX(K1)
εi

]
+op (1) .

(21)

The second term is Op(1/T ), dominated by the first term in the equation above.

Thus, we can obtain a similar result to Proposition 2 in Case 1:
√
N
(
b̂MG − b

)
d→

N (0,Σb) as (N, T ) → ∞.

In a special case of homogeneous slopes bi = b with vb,i = 0, the first term in

equation (21) disappears. Thus, equation (21) reduces to

√
NT

(
b̂MG − b

)
=

1√
N

N∑
i=1

[(
1

T 2
X i(K0)

′MX(K1)
X i(K0)

)−1
1

T
X i(K0)

′MX(K1)
εi

]
+op (1) .

(22)
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The convergence rate of b̂MG in a homogeneous panel becomes
√
NT , same as in Bai,

Kao and Ng (2009) and Huang et al. (2020).

We obtain the following Proposition 4.

Proposition 4 Under Assumptions 1-7, 9 and 10-12, in a homogeneous panel with

bi = b, as (N, T ) → ∞,

√
NT

(
b̂MG − b

)
d→ N (0,ΣMG) ,

where

ΣMG = lim
N→∞

1

N

N∑
i=1

E[(T−2X i(K0)
′MX(K1)

X i(K0))
−1(T−1X i(K0)

′MX(K1)
εi)

× (T−1ε′iMX(K1)
X i(K0)

′)(T−2X i(K0)
′MX(K1)

X i(K0))
−1].

More details can be found in Appendix A.4. For simplicity, the asymptotic bias

mentioned in Theorem 8 of Phillips and Moon (1999) and Proposition 1 of Bai, Ng

and Kao (2009) disappears here under the assumptions of no serial/ cross-sectional

correlation and heteroskedasticity. ΣMG can be estimated consistently by

Σ̂MG =
1

N

N∑
i=1

[(
1

T 2
X i(K̂0)

′MX(K̂1)
X i(K̂0)

)−1(
1

T
X i(K̂0)

′MX(K̂1)
ε̂i

)

×
(
1

T
ε̂′iMX(K̂1)

X i(K̂0)

)(
1

T 2
X i(K̂0)

′MX(K̂1)
X i(K̂0)

)−1
]
,

where ε̂i = Yi −X i(K̂0)b̂MG.

6 Monte Carlo Simulations

In this section, Monte Carlo experiments are conducted to examine the finite

sample properties of the break estimators. We consider the case of three breaks, i.e.,

m = 3, including two common breaks in slopes (k01, k
0
2) and a third one in error factor

loadings k03 in various scenarios. We find supporting results to the main findings in

Theorems 1 and 2. This is done by looking at the frequency of choosing true breaks

using the proposed break estimators. For nonstationary panels, nonstationarity could

come from either ft or vit or both under the common factor assumption (3). Thus,

we consider six different scenarios: i) Case 1 with I(1) factors ft and I(0) vit; ii)

Case 1 under rank deficiency; iii) Case 2 with I(1) ft and I(1) vit; iv) Case 2 with

I(0) ft and I(1) vit; v) Case 2 with I(1) errors εit; vi) Case 1 with mixed stationary

and nonstationary regressors and factors.

17



6.1 Data Generating Process

Our basic design is similar to the one used in KPY but now with multiple breaks:

yit = αi + βi
(
k01, k

0
2

)
xit + γ1,i

(
k03
)
ft + εit, i = 1, ..., N ; t = 1, ..., T, (23)

where αi ∼ iidN(1, 1). The scalar regressor xit is affected by the common correlated

effect ft:

xit = ai + γ2,ift + vit, (24)

with ai ∼ iidN(0.5, 0.5) and γ2,i ∼ iidN(0.5, 0.5). The scalar factor ft follows an

I(1) process:

ft = ft−1 + vft, t = −49, ..., 0, 1, ..., T ;

where f−50 = 0, vft ∼ iidN(0, 1).

Two common breaks k01, k
0
2 in slopes are assumed at [0.3T ] and [0.5T ] of the time

span:

βi(k
0
1, k

0
2) =


βi, t = 1, ..., k01,
βi +∆βi, t = k01 + 1, ..., T,
βi + 2∆βi, t = k02 + 1, ..., T

where βi ∼ iidN(1, 0.04) and ∆βi ∼ iidN(0, 0.5). A third break k03 = [0.7T ] occurs

in the error factor loadings:

γ1,i(k
0
3) =

{
γ1,i, t = 1, ..., k03,
γ1,i +∆γi, t = k03 + 1, ..., T,

(25)

where γ1,i ∼ iidN(1, 0.2) and ∆γi ∼ iidN(0.5, 0.5).

In scenario (i) of Case 1, as in KPY, both εit and vit are stationary. εit = ρiεεi,t−1+

σi (1− ρ2iε)
0.5
ωit, for i = 1, 2, ..., [N/2] and εit = σi (1 + θ2iε)

−0.5
(ωit + θiεωi,t−1), for

i = [N/2] + 1, ..., N , with ωit ∼ iidN(0, 1), σ2
i ∼ iidU [0.5, 1.5], ρiε = iidU [0.05, 0.95]

and θiε ∼ iidU [0, 1]. Similarly, vit = ρvivi,t−1 + ψit, ψit ∼ iidN(0, 1 − ρ2vi), with

vi,−49 = 0, and ρvi ∼ iidU [0.05, 0.95].14

In scenario (ii), we consider the importance of rank deficiency in finite samples.

The DGP here is the same as above, except that the means of ai and γ2,i change to

zero, i.e., ai ∼ iidN(0, 0.5) and γ2,i ∼ iidN(0, 0.5) in equation (24). In the current

design, the rank condition is not satisfied asymptotically.

In scenario (iii) of Case 2, both vit and εit follow I(1) processes,

vit = vi,t−1 + ψit, ψit ∼ iidN(0, 1), t = −49, ..., 0, 1, ..., T.

14In this design, the signal-to-noise ratio is about 1.5.
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We also allow for I(0) ft in the design above in scenario (iv). In addition, in scenario

(v), we examine the impact of nonstationary errors on break point estimators, we

also consider Case 2 with nonstationary errors, i.e., I(1) εit, εit = εi,t−1 + ϑit, ϑit ∼
iidN(0, 1), t = −49, ..., 0, 1, ..., T.

Finally, in scenario (vi), we also consider the case of mixed stationary and non-

stationary regressors and factors. To allow for a stationary regression, we add an

additional regressor and factor in the regression (23) above. More specifically,

yit = αi + β1,i
(
k01
)
x1,it + β2,i

(
k02
)
x2,it + γ11,i

(
k03
)
f1,t + γ12,i

(
k03
)
f2,t + εit,

where both regressors are generated by

x1,it = ai + γ21,if1,t + γ22,if2,t + v1,it,

x2,it = ai + 0 · f1,t + γ23,if2,t + v2,it.

We assume that both v1,it and v2,it are I(0) as vit in Case 1 above. Two factors f1,t

and f2,t are generated as I(1) and I(0) processes, respectively, as follows:

f1,t = f1,t−1 + v1,ft, and f2,t = 0.5f2,t−1 + v2,ft.

Thus, x1,it is I(1) and x2,it is I(0). Same as γ2i, loadings γ21,i, γ22,i, γ23,i ∼ iidN(0.5, 0.5).

The break points k01 = [0.3T ], k02 = [0.5T ] appear in the slopes:

β1,i
(
k01
)

=

{
β11,i, t = 1, ..., k01,
β11,i +∆β1,i, t = k01 + 1, ..., T,

β2,i
(
k02
)

=

{
β21,i, t = 1, ..., k02,
β21,i +∆β2,i, t = k02 + 1, ..., T,

where ∆β1,i,∆β2,i ∼ iidN(0, 0.16). Here γ11,i (k
0
3) and γ12,i (k

0
3) have the same design

as γ1,i (k
0
3) in (25) but the variance of ∆γi changes from 0.5 to 0.16.

Different combinations of T = 20, 50, 100 and N = 10, 50, 200 are considered in

the Monte Carlo experiments with 1,000 replications. Due to limited space, only the

results with T = 50 are reported in the paper.

6.2 Results

Figure 1 presents the histograms of estimators (k̂1, k̂2, k̂3) in Case 1 with nonsta-

tionary factors for T = 50. The true values of the break points are k01 = 15, k02 = 25,

k03 = 35. In each replication, a dynamic programming algorithm proposed by Bai

and Perron (2003) is applied to obtain k̂1, k̂2, k̂3 simultaneously. The upper, middle
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and lower panels represent the empirical distributions of k̂1, k̂2 and k̂3, respectively.

Figure 1 shows that the frequencies of choosing (k01, k
0
2, k

0
3) increase substantially as

N increases from 10 to 200. For example, the probability of choosing k01 increases

from 36% for N = 10 to 69% for N = 200. This finding supports the results in

Theorem 1.

Figure 2 reports the histograms of (k̂1, k̂2, k̂3) in Case 1 for T = 50 under rank

deficiency. The rank condition is required for the validity of the CCE approach to deal

with unobserved common factors. We examine the finite sample properties of these

break estimators when the rank condition is not satisfied asymptotically. Although

the probabilities of choosing the true break points are smaller than those in Figure

1, they still increase substantially with N , showing that under rank deficiency, the

estimators (k̂1, k̂2, k̂3) are still very informative about choosing (k01, k
0
2, k

0
3) when N

is large.

In Figure 3, we consider Case 2 with nonstationary regressors and both ft and

vit are nonstationary in xit. Similar patterns as in Figure 1 are observed. The

probabilities of choosing true break dates increase with N , e.g., nearly 100% for

choosing k01 by k̂1 for N = 200 and T = 50. This finding supports the consistency

of the break estimators in Theorem 2. In Figure 4, we also consider a scenario of an

I(0) ft and I(1) vit in Case 2, where ft = 0.5ft−1 + vft and vft ∼ iidN(0, 0.75). As

expected, as long as xit is still I(1), k̂1, k̂2, k̂3 are consistent. Little impact is spotted

from changing ft from I(1) to I(0) in Figure 4.

In Figure 5, we consider the scenario of nonstationary errors εit in the design of

Case 2 above. Under the current design, ft, vit and εit follow I(1) processes. Different

from Case 2, I(1) εit could lead to a spurious regression and thus, the least squares

estimators of slopes could be inconsistent. In addition, nonstationary εit could lead

to a smaller signal-to-noise ratio in the DGP of Figure 5 than that of Figure 3 with

I(0) εit. Thus, we observe smaller probabilities of choosing (k01, k
0
2, k

0
3) here, even

though the same pattern remains. That is, big N helps to date the break points.

Lastly, we examine the scenario of mixed stationary and nonstationary regressors

in Figure 6, as in Bai, Kao and Ng (2009), Huang, Jin, Phillips, Su (2021). Slightly

different from the designs used in Figures 1-4, an additional regressor and factor are

added to the design (23). In our modified design, given an I(1) f1,t and an I(0)

f2,t, x1,it, x2,it are I(1) and I(0), respectively. We consider I(0) vit in this scenario

to avoid potential spurious regression after f1,t and f2,t are partialled out from the
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regressors and yit. As expected, the frequency of choosing k02, the break point in

the stationary regressors, is smaller than that of choosing k01 under the same design

parameters for a same N . After scaling up the magnitude of the break in β2,i (k
0
2),

we find a similar pattern as in Figure 1, still observing increasing probabilities of

dating the true break points with N in the histograms of k̂1, k̂2, k̂3.

Moreover, we also conduct additional robustness checks, including using (ȳ·t, x̄·t)

instead of x̄i·, to proxy ft, boundary breaks, fixed effects model, different magnitude

of breaks in slopes and factor loadings, adding a time trend etc. These results can be

found in Figures A1-A6 in the supplementary Appendix B. The results with T = 20

and 100 are in line with those with T = 50 reported above, and are available upon

request from the authors.

[Insert Figures 1-6 Here]

Finally, we examine the finite sample properties of the slope estimators in Case 1.

Table 1 reports the root mean squared error (RMSE) and bias of b̂MG = 1
N

∑N
i=1 b̂i(k̂1,

k̂2, k̂3) defined in (16) under the design described in Figure 1. The size of the t test

is also included. The results show that the RMSE as well as bias decrease notably

with (N, T ), in line with the simulation results in KPY.

7 Application: International R&D Spillovers

In this section, we apply our approach to an empirical example of international

R&D spillovers, which was studied by Coe and Helpman (1995) and Coe, Help-

man, Hoffmaister (2009, CHH hereafter). Huang et al. (2021) find a latent group

structure in the long-run relationship between technological change, domestic R&D

stock, foreign R&D stock for 24 OECD countries during 1971-2004. Different from

CHH (2009) and Huang et al. (2021) who emphasize heterogeneous in-

ternational R&D spillovers in different countries, we focus on the hetero-

geneous effects in different time periods along with the changing global

economic conditions.

As pointed out by Coe et al. (2009), the total factor productivity (TFP) and

domestic R&D stock accelerated after 1990 for some countries. To accommodate

this pattern, we allow common breaks in their long-run relationships. We follow the

specification considered by Huang et al. (2021, model (5.1)),

log(yit) = βd
i

(
k01
)
log(sdit) + βf

i

(
k01
)
log(sfit) + γ′ift + εit, (26)
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where yit is the TFP in country i in year t. sdit and s
f
it are real domestic and foreign

R&D capital stocks, respectively. βd
i (k

0
1) and β

f
i (k

0
1) represent heterogeneous effects

of domestic and foreign R&D stocks on the TFP. We allow a common break k01 in

the slopes. Detailed data information is provided by Coe et al. (2009) and Huang et

al. (2021), who found a single nonstationary common factor in the data. Here, we

also assume an I(1) factor ft.

Table 2 columns (1) and (2) include the dynamic OLS estimates of

CHH (2009) and pooled FM-OLS by Huang et al. (2021, Table 7) without

considering a latent group structure in the slopes for comparison. Using

the cross-sectional averages of log(sdit) and log(sfit) to proxy the unobserved

common factor, we estimate the common break and slopes in (26) with

the least squares estimation method proposed in Section 3. There are

two key findings in our estimation results. First, we find that there is a

common break in the slopes in 1992.15 It splits the sample period into two

regimes, 1971-1992 and 1993-2004, and the estimation results in these two

sample periods are reported in columns (3) and (4), respectively. Second,

the coefficients of log(sdit) and log(sfit) are significantly different in these two

periods, with a doubling effect of foreign R&D spillovers during 1993-

2004. 16

The doubling effect of foreign R&D spillovers suggests that international

technology diffusion via importing foreign R&D plays a more important

role in boosting domestic productivity growth than domestic R&D in the

OECD countries, and this effect is more pronounced starting from 1993.

Following the German reunification in October 1990, the collapse of the

former Soviet Union in Decomember 1991, and more importantly, the

formal establishment of the European Union in 1993, globalization accel-

erated in the early 1990s. According to the well cited KOF Globalisation

Index, the world overall index sped up starting from 1991. 17

In a globalized economy, R&D activities concentrate in a few rich

countries. For example, Keller (2004) documented that 84 percent of

15The CUSUM test of common breaks proposed by Jiang and Kurozumi (2023)
suggests that there is one comon break in the data.

16When there are two common breaks, our second estimated break date occurs in 1976. The
second break of 1976 splits the period 1971-1992 into two sub-regimes.

17The KOF Globalisation Index is provided by KOF Swiss Economic Institute at ETH Zurich.
The link: https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalisation-index.html
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Table 2: Structural Change In International R&D Spillover
Dependent Variable: Total Factor Productivity

Periods 1971-2004 1971-2004 1971-1992 1993-2004
Columns (1) (2) (3) (4)
Methods CHH2009 FM-OLS CCEMG CCEMG
log(sdit) 0.095*** 0.099*** 0.084*** 0.098***

(0.005) (0.027) (0.005) (0.005)

log(sfit) 0.213*** 0.121*** 0.123*** 0.251***
(0.014) (0.044) (0.035) (0.054)

Note: (1) Standard errors are reported in parentheses. (2) The stars, *, ** and ***
indicate the significance level at 10%, 5% and 1%, respectively.

the world’s R&D spending was contributed by the G-7 countries in 1995.

With more free trade and foreign direct investment, small and developing

economies depend more on foreign technologies than domestic R&D in

their productivity growth. According to Keller (2004), “for most coun-

tries, foreign sources of technology account for 90 percent or more of

domestic productivity growth. ” Our estimates in columns (3) and (4)

indicate that this is also the case for OECD countries.

8 Conclusion

This paper proposes the estimation of unknown multiple structural breaks both

in slopes and factor loadings in nonstationary panels with common factors. Based

on KPY’s approach for dealing with nonstationary factors in panels, we extend Bai

and Perron’s least squares estimator for multiple breaks in time series regression to

nonstationary heterogeneous panels with unobserved factors in errors. We show that

the proposed estimators, including the estimated structural breaks and slopes, are

consistent in both cases of nonstationary factors and nonstationary regressors. These

main findings are supported by the Monte Carlo simulations.

There are potentially two important issues to explore in the current framework.

One is testing for multiple structural changes in nonstationary panels. In this paper,

we only assume multiple breaks in slopes and factor loadings and estimate these

break points. It would be meaningful to test the existence of the breaks in many

empirical studies before applying our estimation methods. A candidate is to extend

Bai and Perron’s (1998) supF or double maximum tests into nonstationary panels.

Another important issue is related to sequential estimation of the break points. In
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this paper, we estimate multiple breaks simultaneously. In the case of mixed sta-

tionary and nonstationary factors and regressors as considered in Figures 4 and 5, it

would matter a lot whether breaks are estimated simultaneously or sequentially. It

would be interesting to explore the asymptotic properties of sequential estimation of

multiple breaks as in Bai and Perron (1998) and Pang, Du and Chong (2021). We

leave these research questions for future research.
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Supplementary Appendices: Proofs of Theorems and
Lemmas (not for publication)

Nonstationary Heterogeneous Panels with Multiple
Structural Changes

by Badi H. Baltagi, Qu Feng, Wei Wang

The supplementary appendices include detailed proofs of the main results in the

text. To simplify notation, in this section we consider the case of three breaks,m = 3,

including two in the slopes, (k01, k
0
2), and one in the error factor loadings, k03. The

proofs of the general case in model (10) can be presented at the cost of additional

notation.

Specifically, Appendix A includes detailed proofs of Theorems 1 and 2, Proposi-

tions sub-regimes1-4. Subsection A.1 provides necessary Lemmas and detailed proof

of Theorem 1. Similarly, subsection A.2 provides necessary lemmas and proof of

Theorem 2. Lastly, Subsection A.3 provides proofs of Propositions 1- 2, and A.4

provides proofs of Propositions 3-4 respectively. Detailed proofs of lemmas are col-

lected in the supplementary Appendix B. Additional figures of simulations are also

attached in the last.

Appendix A: Proofs of Theorems and Propositions

A.1 Proof of Theorem 1

Proof of Theorem 1.

Following Bai and Perron (1998), we decompose the analysis of multiple breaks

into several problems involving a single structural change in each. Without loss of

generality, we only provide the proof of lim(N,T )→∞ P (k̂1 = k01) = 1. The proof of

lim(N,T )→∞ P (k̂j = k0j ) = 1, j = 2, 3, can be shown similarly and is omitted.

To show k̂1 − k01
p→ 0, it is equivalent to show that for any given ϵ > 0, for both

large T and N , P (|k̂1 − k01| ≥ 1) < ϵ. As in BFK (2016), we assume that k̂1 − k01,

k̂2 − k02 and k̂3 − k03 are bounded here for simplicity.18

Under Assumption 1 and that the estimators of break fractions are consistent,

we consider the set K(Ck) = {(k1, k2, k3) : 1 ≤ |k1 − k01|, |kj − k0j | ≤ Ck, aT ≤ kj ≤
18With an observed proxy for ft, each series is considered a time series model with multiple breaks.

Based on Bai and Perron’s (1998) finding, here we assume that estimated breaks are bounded.
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(1−a)T, j = 1, 2, 3} for a finite constant Ck and a > 0. By definition, S(k1, k2, k3) =∑N
i=1 SSRi(k1, k2, k3) is minimized globally at (k̂1, k̂2, k̂3), i.e., S(k̂1, k̂2, k̂3) ≤ S(k01, k̂2, k̂3)

with probability 1.

Therefore, we examine the behavior of S(k1, k2, k3) on the set K(Ck). It is suffi-

cient to show that for each ϵ > 0, for both large T and N, P (minK(Ck)[S(k1, k2, k3)−
S(k01, k2, k3)] ≤ 0) < ϵ. Without loss of generality, assume k1 < k01 < k2,

S(k1, k2, k3)− S(k01, k2, k3)

=[S(k1, k2, k3)− S(k1, k
0
0, k2, k3)]− [S(k01, k2, k3)− S(k1, k

0
1, k2, k3)]. (27)

=
∑N

i=1

[
SSRi(k1, k2, k3)− SSRi(k1, k

0
1, k2, k3)

]
−
∑N

i=1

[
SSRi(k

0
1, k2, k3)− SSRi(k1, k

0
1, k2, k3)

]
,

where, SSRi(k1, k
0
1, k2, k3) is the sum of squared residuals in the regression with four

breaks at (k1, k
0
1, k2, k3) for series i and S(k1, k

0
1, k2, k3) =

∑N
i=1 SSRi(k1, k

0
1, k2, k3).

Thus, the analysis of a three-break or multiple break problem can be decomposed into

two problems involving a single break. The first term SSRi(k1, k2, k3)−SSRi(k1, k
0
1, k2, k3)

allows an additional fourth break k01 between k1 and k2, and the second term SSRi(k
0
1, k2, k3)−

SSRi(k1, k
0
1, k2, k3) adds an additional fourth break at k1 between 1 and k01. Thus,

it is convenient to derive each part above as a single common break issue in panel

data as in BFK (2016).

Following Bai and Perron (1998), we denote δ̂i(k̂1, k̂2, k̂3) =
(
δ̂′i1, δ̂

′
i2, δ̂

′
i3, δ̂

′
i4

)′
the estimator of (δi1, δi2, δi3, δi4) in the regression with three breaks k1, k2 and k3,

and (δ̂∗i1, δ̂i∆, δ̂
∗
i2, δ̂

∗
i3, δ̂

∗
i4) the estimator of (δi1, δi1, δi2, δi3, δi4) based on the partition

(k1, k
0
1, k2, k3). In particular, δ̂∗i1 is an estimate of δi1 associated with regres-

sor (zi1, ..., zi,k1 , 0, ..., 0)
′, δ̂i∆ is the estimate of δi1 associated with regressor Zi∆ =

(0, ..., 0, zi,k1+1, ..., zi,k01 , 0, ..., 0)
′, and δ̂∗i2 is the estimate of δi2 associated with regressor

(0, ..., 0, zi,k01+1, ..., zi,k2 , 0, ..., 0)
′. δ̂∗i3, δ̂

∗
i4 can be defined similarly.

By definition,

SSRi(k1, k2, k3) =

k1∑
t=1

(
yit − z′itδ̂i1

)2
+

k2∑
t=k1+1

(
yit − z′itδ̂i2

)2
+

k3∑
t=k2+1

(
yit − z′itδ̂i3

)2
+

T∑
t=k3+1

(
yit − z′itδ̂i4

)2
,

2



and

SSRi(k1, k
0
1, k2, k3) =

k1∑
t=1

(
yit − z′itδ̂

∗
i1

)2
+

k01∑
t=k1+1

(
yit − z′itδ̂i∆

)2
+

k2∑
t=k01+1

(
yit − z′itδ̂

∗
i2

)2
+

k3∑
t=k2+1

(
yit − z′itδ̂

∗
i3

)2
+

T∑
t=k3+1

(
yit − z′itδ̂

∗
i4

)2
.

It’s worth noting that δ̂i1 and δ̂∗i1 are the estimators associated with same regressor

(zi1, ..., zi,k1 , 0, ..., 0)
′, thus, δ̂i1 = δ̂∗i1. Similarly, δ̂i3 = δ̂∗i3, δ̂i4 = δ̂∗i4. Thus,

SSRi(k1, k2, k3)− SSRi(k1, k
0
1, k2, k3) (28)

=

k2∑
t=k1+1

(
yit − z′itδ̂i2

)2
−

 k01∑
t=k1+1

(
yit − z′itδ̂i∆

)2
+

k2∑
t=k01+1

(
yit − z′itδ̂

∗
i2

)2 .
Since the term SSRi(k1, k2, k3)−SSRi(k1, k

0
1, k2, k3) involves a regression with a

break k01 between k1 and k2, we focus on the interval [k1+1, k2]. k
0
1 splits [k1+1, k2]

into two parts [k1+1, k01] and [k01 +1, k2]. These three intervals are referred to as ⋆,

∆ and ⋆ −∆, respectively, i.e., ⋆ = [∆, ⋆ −∆]. Under the current assumptions,

the number of observations on interval ∆ is finite, different from that on ⋆ or

⋆−∆. Define Yi⋆ = (yi,k1+1, ..., yi,k2)
′, Yi∆ = (yi,k1+1, ..., yi,k01 , 0, ..., 0)

′ and Yi(⋆−∆) =

Yi⋆ − Yi∆ = (0, ..., 0, yi,k01+1, ..., yi,k2)
′. Zi⋆, ε

∗
i⋆, Zi∆, Zi(⋆−∆) can be defined in the

same fashion. By construction, Y ′
i∆Yi(⋆−∆) = 0 and Z ′

i∆Zi(⋆−∆) = 0.

Recall that the OLS estimators of (δi1, δi2) on intervals of [k1+1, k01] and [k01+1, k2]

are δ̂i∆, δ̂
∗
i2, respectively. Without considering a break in slopes on the interval [k1 +

1, k2], the OLS estimator for δi2 is δ̂i2. The first term in (28),
∑k2

t=k1+1(yit−z′itδ̂i2)2 =
[Yi⋆ −Zi⋆δ̂i2]

′[Yi⋆ −Zi⋆δ̂i2] is the sum of squared residuals in the regression of y on

z for series i using time series sample on the interval [k1 + 1, k2]. The second term

in equation (28)∑k01
t=k1+1(yit − z′itδ̂i∆)

2 +
∑k2

t=k01+1(yit − z′itδ̂
∗
i2)

2

=
∑k01

t=k1+1(yit − z′itδ̂i∆)
2 +

∑k2
t=k01+1(yit − z′itδ̂i∆ + z′it(δ̂i∆ − δ̂∗i2))

2

= [Yi⋆ − Zi⋆δ̂i∆ − Zi(⋆−∆)(δ̂
∗
i2 − δ̂i∆)]

′[Yi⋆ − Zi⋆δ̂i∆ − Zi(⋆−∆)(δ̂
∗
i2 − δ̂i∆)]

is the sum of squared residuals in the regression of y on z for series i with a break

k01 on the interval [k1 + 1, k2]. Thus, according to Amemiya (1985, p. 31),

SSRi(k1, k2, k3)− SSRi(k1, k
0
1, k2, k3) = (δ̂∗i2 − δ̂i∆)

′Z ′
i(⋆−∆)MZi⋆Zi(⋆−∆)(δ̂

∗
i2 − δ̂i∆)

= (δ̂∗i2 − δ̂i∆)
′Z ′

i∆MZi⋆Zi∆(δ̂
∗
i2 − δ̂i∆).

3



The second equality above is due to the facts of Zi(⋆−∆) = Zi⋆ − Zi∆ and

Z ′
i(⋆−∆)MZi⋆Zi(⋆−∆) = Z ′

i∆MZi⋆Zi∆,

where MZi⋆ = Ik2−k1+1−Zi⋆

(
Z ′

i⋆Zi⋆

)
Z ′

i⋆ and I(k2−k1+1) is the (k2−k1+1)× (k2−
k1 + 1) identity matrix. Next, following BFK (2016) we derive the expression of

SSRi(k1, k2, k3)− SSRi(k1, k
0
1, k2, k3).

For t ∈ [k1+1, k01], δ̂i∆ = (Z ′
i∆Zi∆)

−1Z ′
i∆Yi∆ and δ̂∗i2 = (Z ′

i(⋆−∆)Zi(⋆−∆))
−1Z ′

i(⋆−∆)Yi(⋆−∆)

for t ∈ [k01 + 1, k2]. Partitioned regression gives

δ̂∗i2 − δ̂i∆ = (Z ′
i(⋆−∆)MZi⋆Zi(⋆−∆))

−1Z ′
i(⋆−∆)MZi⋆Yi⋆

= −(Z ′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆Yi⋆.

Plugging Yi⋆ = Zi⋆δi1 + Zi(⋆−∆) (δi2 − δi1) + ε∗i⋆ into the equation above gives,

δ̂∗i2 − δ̂i∆ = (δi2 − δi1) +
(
Z ′

i(⋆−∆)MZi⋆Zi(⋆−∆)

)−1
Z ′

i(⋆−∆)MZi⋆ε
∗
i⋆ (29)

= (δi2 − δi1)−
(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆ε
∗
i⋆.

Thus, we can get

SSRi(k0, k1)− SSRi(k0, k
0
0, k1) = (δi2 − δi1)

′ Z ′
i∆MZi⋆Zi∆ (δi2 − δi1) (30)

−2 (δi2 − δi1)
′ Z ′

i∆MZi⋆ε
∗
i⋆

+ε∗′i⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆ε
∗
i⋆.

Similarly, the second term SSRi(k
0
1, k2, k3)− SSRi(k1, k

0
1, k2, k3) in (27) involves

a regression with a break at k1 between 1 and k01. Denote the interval [1, k01] by ♢.

k1 splits [1, k01] into two parts [1, k1] and [k1 + 1, k01]. Note that the latter interval

has been denoted as ∆ above. Similarly, define Yi♢ = (yi,1, ..., yi,k01)
′, Zi♢ and ε∗i♢ on

the interval ♢. The number of observations on the interval ♢ is unbounded under

Assumption 1 as T → ∞. Note that there is no true break in slopes on the interval

[1, k01] and the corresponding true slope parameter is δi1. The OLS estimators of

(δi1, δi1) on intervals of [1, k1] and [k1+1, k01] are δ̂
∗
i1, δ̂i∆, respectively. As in equation

(27), we can obtain

SSRi(k
0
1, k2, k3)− SSRi(k1, k

0
1, k2, k3) = (δ̂i∆ − δ̂∗i1)

′Z ′
i∆MZi♢Zi∆(δ̂i∆ − δ̂∗i1).

Partitioned regression gives δ̂i∆ − δ̂∗i1 = (Z ′
i∆MZi♢Zi∆)

−1Z ′
i∆MZi♢Yi♢, where MZi♢ =

Ik01 − Zi♢(Z
′
i♢Zi♢)

−1Z ′
i♢. Plugging Yi♢ = Zi♢δi1 + ε∗i♢ into the equation above gives

δ̂i∆ − δ̂∗1i = (Z ′
i∆MZi♢Zi∆)

−1Z ′
i∆MZi♢ε

∗
i♢. (31)
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Since there is no break in slopes on the interval [1, k01], no slope shift term appears

in (31), which is different from (29). Thus, we can get

SSRi(k
0
1, k2, k3)− SSRi(k1, k

0
1, k2, k3) = ε∗′i♢MZi♢Zi∆(Z

′
i∆MZi♢Zi∆)

−1Z ′
i∆MZi♢ε

∗
i♢.

(32)

Combining equations (30) and (32), we obtain,

S(k1, k2, k3)− S(k01, k2, k3)

=
∑N

i=1

[
Si(k1, k2, k3)− Si(k1, k

0
1, k2, k3)

]
−
∑N

i=1

[
Si(k

0
1, k2, k3)− Si(k1, k

0
1, k2, k3)

]
=

∑N
i=1 (δi2 − δi1)

′ Z ′
i∆MZi⋆Zi∆ (δi2 − δi1)− 2

∑N
i=1 (δi2 − δi1)

′ Z ′
i∆MZi⋆ε

∗
i⋆

+
∑N

i=1ε
∗′
i⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆ε
∗
i⋆

−
∑N

i=1ε
∗′
i♢MZi♢Zi∆

(
Z ′

i∆MZi♢Zi∆

)−1
Z ′

i∆MZi♢ε
∗
i♢.

Like in Bai (1997) and BFK (2016), here S(k1, k2, k3) − S(k01, k2, k3) can be ex-

pressed as the sum of a deterministic part
∑N

i=1 J1i(k1, k2, k3) and a stochastic term

−
∑N

i=1 J2i(k1, k2, k3), where J1i(k1, k2, k3) = (δi2 − δi1)
′Z ′

i∆MZi⋆Zi∆(δi2 − δi1),

J2i(k1, k2, k3) = [2(δi2 − δi1)
′Z ′

i∆MZi⋆ε
∗
i⋆]− [ε∗′i⋆MZi⋆Zi∆(Z

′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆ε

∗
i⋆]

+ [ε∗′i♢MZi♢Zi∆(Z
′
i∆MZi♢Zi∆)

−1Z ′
i∆MZi♢ε

∗
i♢].

Thus, S(k1, k2, k3)− S(k01, k2, k3) =
∑N

i=1 J1i(k1, k2, k3)−
∑N

i=1 J2i (k1, k2, k3).

To prove Theorem 1 and the statement P (minK(Ck)[S(k1, k2, k3)−S(k01, k2, k3)] ≤
0) < ϵ for both large T and N , it suffices to show

P (supK(Ck)
| 1
T

∑N
i=1J2i(k1, k2, k3)| ≥ infK(Ck)

1

T

∑N
i=1J1i(k1, k2, k3)) < ϵ. (33)

Consider the term 1
T
Z ′

i∆MZi⋆Zi∆ in J1i(k1, k2, k3). Since Zi⋆ = Zi∆ + Zi(⋆−∆)

and Zi∆′Zi(⋆−∆) = 0,

T−1Z ′
i∆MZi⋆Zi∆ = T−1Z ′

i∆Zi∆ − T−1Z ′
i∆Zi⋆(Z

′
i⋆Zi⋆)

−1Z ′
i⋆Zi∆

= T−1Z ′
i∆Zi∆ − T−2Z ′

i∆Zi∆(T
−2Z ′

i⋆Zi⋆)
−1T−1Z ′

i∆Zi∆.

Note that the numbers of observations on the intervals of ⋆ and ∆ are k2 − k1 and

k01 − k1. On the set K(Ck), k
0
1 − k1 is finite, while k2 − k1 is unbounded as T → ∞.

By Lemma 1(i), 1
T
Z ′

i∆Zi∆ = Op(1) and 1
T 2Z

′
i∆Zi∆(

1
T 2Z

′
i⋆Zi⋆)

−1 1
T
Z ′

i∆Zi∆ = op(1) on

K(Ck), thus, T
−1Z ′

i∆MZi⋆Zi∆ = T−1Z ′
i∆Zi∆ + op(1). Last,

infK(Ck)
1

T

∑N
i=1J1i(k1, k2, k3) = infK(Ck)

∑N
i=1 (δi2 − δi1)

′ (
1

T
Z ′

i∆Zi∆) (δi2 − δi1)+op(1).
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Under Assumption 6, let a finite ϱmin > 0 be the minimum eigenvalue of 1
N

∑N
i=1(

1
T
Z ′

i∆Zi∆)

uniformly on K(Ck). Following the proof of Lemma 1 in BFK’s (2016) appendix, we

obtain

infK(Ck)
1

T

∑N
i=1J1i(k1, k2, k3) ≥ ϱminϕN,1,

with probability tending to 1 and ϕN,1 =
∑N

i=1(δi2 − δi1)
′(δi2 − δi1). Thus, from

equation (33), to prove Theorem 1, it is sufficient to show

P (supK(Ck)

1

TϕN,1

|
∑N

i=1J2i(k1, k2, k3)| ≥ ϱmin) < ϵ. (34)

By Lemma 2,

|
∑N

i=1J2i(k1, k2, k3)| ≤ |
∑N

i=1[2(δi2 − δi1)
′Z ′

i∆MZi⋆ε
∗
i⋆]|

+|
∑N

i=1[ε
∗′
i⋆MZi⋆Zi∆(Z

′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆ε

∗
i⋆]|

+|
∑N

i=1[ε
∗′
i♢MZi♢Zi∆(Z

′
i∆MZi♢Zi∆)

−1Z ′
i∆MZi♢ε

∗
i♢]|

= Op(T
1/2ϕ

1/2
N,1) +Op(N).

Thus, 1
TϕN,1

∣∣∣∑N
i=1 J2i(k1, k2, k3)

∣∣∣ = Op(
1√

TϕN,1

) + Op(
N

TϕN,1
). Under Assumption 9

that N
TϕN,1

→ 0, as (N, T ) → ∞, the term 1
TϕN,1

|J2(k1, k2, k3)| vanishes for any

(k1, k2, k3) ∈ K(Ck). Therefore, (34) and then Theorem 1 are established.

The following Lemmas 1 and 2 are needed to prove Theorem 1.

Lemma 1 Under Assumptions 1-5, 7,8, and uniformly over K (Ck) , as (N, T ) →
∞, for i = 1, ..., N,

(i) 1
T
Z ′

i∆Zi∆ = Op (1),
1
T 2Z

′
i⋆Zi⋆ = Op (1);

(ii) 1√
T
Z ′

i∆εi⋆ = 1√
T
Z ′

i∆εi∆ = Op (1),
1
T
Z ′

i⋆εi⋆ = Op (1);

(iii) 1√
T
Z ′

i∆εi♢ = 1√
T
Z ′

i∆εi∆ = Op (1),
1
T
Z ′

i♢εi♢ = Op (1);

(iv) 1
T
V̄ ′
⋆V̄⋆ = Op

(
1
N

)
, 1√

T
Z ′

i∆V̄⋆ = Op

(
1√
N

)
, 1

T
Z ′

i⋆V̄⋆ = Op

(
1√
N

)
.

Lemma 2 Under Assumptions 1-8, uniformly on K (Ck),

(i)
∑N

i=1 (δi2 − δi1)
′ Z ′

i∆MZi⋆ε
∗
i⋆ = Op

(√
TϕN,1

)
;

(ii)
∑N

i=1 ε
∗′
i⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆ε
∗
i⋆ = Op (N);

(iii)
∑N

i=1 ε
∗′
i♢MZi♢Zi∆

(
Z ′

i∆MZi♢Zi∆

)−1
Z ′

i∆MZi♢ε
∗
i♢ = Op (N).

The proofs of Lemmas 1 and 2 can be found in the supplementary Appendix B.

A.2 Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. To obtain the inequality

(33) in Case 2 of I(1) vit, Lemmas 3 and 4 are needed.
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Lemma 3 Under Assumptions 1-9 and 10, uniformly on K(Ck) and for each i =

1, ..., N , as (N, T ) → ∞,

(i) 1
T
Z ′

i∆Zi∆ = Op (1),
1
T 2Z

′
i⋆Zi⋆ = Op (1);

(ii) 1√
T
Z ′

i∆εi⋆ = 1√
T
Z ′

i∆εi∆ = Op (1),
1
T
Z ′

i⋆εi⋆ = Op (1);

(iii) 1√
T
Z ′

i∆εi♢ = 1√
T
Z ′

i∆εi∆ = Op (1),
1
T
Z ′

i♢εi♢ = Op (1);

(iv) 1
T 2 V̄

′
⋆V̄⋆ = Op

(
1
N

)
, 1

T
Z ′

i∆V̄⋆ = Op

(
1√
N

)
, 1

T
√
T
Z ′

i⋆V̄⋆ = Op

(
1√
N

)
.

Lemma 4 Under Assumptions 1-9 and 10, uniformly on K (Ck),

(i)
∑N

i=1 (δi2 − δi1)
′ Z ′

i∆MZi⋆ε
∗
i⋆ = Op

(√
TϕN,1

)
+Op

(
T
√

ϕN,1

N

)
;

(ii)
∑N

i=1 ε
∗′
i⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆ε
∗
i⋆ = Op (N) +Op (T );

(iii)
∑N

i=1 ε
∗′
i♢MZi♢Zi∆

(
Z ′

i∆MZi♢Zi∆

)−1
Z ′

i∆MZi♢ε
∗
i♢ = Op (N) +Op (T ).

Proof of Theorem 2. As in the proof of Theorem 1, it is suffices to show for

any ϵ > 0, for large N and T ,

P (supK(Ck)
| 1
T

∑N
i=1J2i(k1, k2, k3)| ≥ infK(Ck)

1

T

∑N
i=1J1i(k1, k2, k3)) < ϵ.

In Case 2, the only difference lies in that vit changes from I(0) to I(1). Since xit =

Γ′
ift+vit and x̄t = Γ̄′ft+v̄t, zit = (x′it, x̄

′
·t)

′ remains I(1) for I(1) ft. Thus, with Lemma

3, the following result remains unchanged, infK(Ck)
1
T

∑N
i=1J1i(k1, k2, k3) ≥ ϱminϕN,1

with probability tending to 1. As in the proof of Theorem 1, we need to show

P (supK(Ck)

1

TϕN,1

|
∑N

i=1J2i(k1, k2, k3)| ≥ ϱmin) < ϵ. (35)

By Lemma 4,

|
∑N

i=1J2i(k1, k2, k3)| ≤ |
∑N

i=1[(δi2 − δi1)
′Z ′

i∆MZi⋆ε
∗
i⋆]|

+|
∑N

i=1[ε
∗′
i⋆MZi⋆Zi∆(Z

′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆ε

∗
i⋆]|

+|
∑N

i=1[ε
∗′
i♢MZi♢Zi∆(Z

′
i∆MZi♢Zi∆)

−1Z ′
i∆MZi♢ε

∗
i♢]|

= Op(
√
TϕN,1) +Op(Tϕ

1/2
N,1N

−1) +Op (N) +Op (T ) .

Thus,

1

TϕN,1

|J2(k1, k2, k3)| = Op(T
−1/2ϕ

−1/2
N,1 )+Op(N

−1/2ϕ
−1/2
N,1 )+Op(NT

−1ϕ−1
N,1)+Op(

1

ϕN,1

).

Under Assumption 9, ϕN,1 → ∞ and N
TϕN,1

→ 0, as as (N, T ) → ∞, 1
TϕN,1

|J2(k1, k2, k3)|
vanishes for any (k1, k2, k3) ∈ K(Ck). Therefore, (35) is established, and Theorem 2

is proved.
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A.3 Proofs of Propositions 1 and 2

In this subsection, we also assume m = 3, including two breaks k01, k
0
2 in slopes

and a third one k03 in error factor loadings. Let

V i(k
0
1, k

0
2) = diag

(
(v′i1, ..., v

′
i,k01

)′, (v′i,(k01+1), ..., v
′
i,k02

)′, (v′i,k02+1, ..., v
′
iT )

′
)
.

in order to prove Propositions 1 and 2, we first give the following Lemma.

Lemma 5 Under Assumptions 1-5, 7, 8, and uniformly over K (Ck) and

for each i = 1, ..., N, as (N, T ) → ∞,

(i) || 1
T
V̄ ′(k01, k

0
2)MX(k01 ,k

0
2)
V̄ (k01, k

0
2)|| = Op(N

−1), || 1
T
V ′

i(k
0
1, k

0
2)MX(k01 ,k

0
2)
V i(k

0
1, k

0
2)|| =

Op(1)

(ii)|| 1
T
F(k01, k02)′MX(k01 ,k

0
2)
F(k01, k02)|| = Op (N

−1), || 1
T
V ′

i(k
0
1, k

0
2)MX(k01 ,k

0
2)
F(k01, k02)|| =

Op(N
−1/2);

(iii) || 1
T
V̄ (k01, k

0
2)

′εi|| = Op(
1
N
) +Op(

1√
NT

), || 1
T
V̄ (k01, k

0
2)

′F0(k01, k
0
2)|| = 1√

N
;

(iv) || 1
T
F0′(k01, k

0
2)εi|| = Op(1).

Lemma 6 Under the Assumptions 1-5, 7, 8 and q ≤ p,as (N, T ) → ∞,

1

T
X i(k

0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2) =

1

T
V ′

i(k
0
1, k

0
2)V i(k

0
1, k

0
2) +Op(

1

N
) +Op(

1√
T
).

Proof of Lemma 6. We consider the case of two common breaks in the

slopes and one in the error factor loadings, i.e., m0 = 2, m1 = 1. In matrix

form,

Yi =

 x′i1βi1
...

x′iTβi,m0+1

+

 f ′
1γi1
...

f ′
Tγi,m1+1

+ εi

= X i(k
0
1, k

0
2)bi + F(k03)

T×[(m1+1)p]

gi + εi,

where X i(k
0
1, k

0
2) = diag (Xi1, Xi2, Xi,3) , F(k03)

T×[(m1+1)p]

= diag((f1, · · · , fk03)
′, (fk03+1, · · · , fT )′)

and gi = (γ′i1, γ
′
i2)

′.

We use X(k03)
T×[(m1+1)p]

= diag
(
(x̄′1, ..., x̄

′
k03
)′, (x̄′

k03+1
, ..., x̄′T )

′
)
to proxy F(k03),

F̂(k03) = X(k03)
T×[(m1+1)p]

= F(k03)
T×[(m1+1)q]

Γ̄
[(m1+1)q]×[(m1+1)p]

+ V̄ (k03)
T×[(m1+1)p]

= F(k03)(I2 ⊗ Γ̄) + V̄ (k03),
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where V̄ (k03)
T×[(m1+1)q]

= diag((v̄′1, ..., v̄
′
k03
)′, (v̄′

k03+1
, ..., x̄′T )

′), and Γ̄
[(m1+1)q]×[(m1+1)q]

= diag
(
Γ̄, · · · , Γ̄

)
=

Im1+1 ⊗ Γ̄.

Denote F0(k03) = [F(k03), 0T×[(m1+1)(p−q)]] and the full rank matrix

B
[(m1+1)p]×[(m1+1)p]

= [B[(m1+1)q], B−(m1+1)q]

=

[
Γ̄

−1
(m1+1)q −Γ̄

−1
(m1+1)qΓ̄−(m1+1)q

0(m1+1)(p−q)×q I(m1+1)p−(m1+1)q

]
.

DefineΓ̄ = [Γ̄(m1+1)q, Γ̄−(m1+1)q] and V̄ (K1) = [V̄(m1+1)q(K1), V̄−(m1+1)q(K1)], simi-

lar to the definitions of C̄ = [C̄m, C̄−m] and Ū = [Ūm, Ū−m] in P.62 of Kara-

biyik et al. (2017). Thus,

F̂(K1)B = X(K1)B = F(K1)Γ̄+ V̄ (K1)B

= F0(K1) + [V̄(m1+1)q(K1)Γ̄
−1
(m1+1)q, V̄−(m1+1)q(K1)

− V̄(m1+1)q(K1)Γ̄
−1
(m1+1)qΓ̄−(m1+1)q]

andF̂0(K1) = F0(K1)+V̄
0(K1) with V̄ 0(K1) = V̄ (K1)BDN = [V̄ 0

(m1+1)q(K1), V̄
0
−(m1+1)q(K1)].

Since BDN is positive definite, MF̂(K1)
=MF̂0(K1)

.

Define the pseudo-inverse Γ̄
+
= Γ̄

′
(Γ̄Γ̄

′
)−1 such that Γ̄Γ̄

+
= I(m1+1)q. Fol-

lowing equation (S20) of Karabiyik et al. (2017), we obtain

X i(K0) = F(K0)Γi + Vi = F(K0)Γ̄Γ̄
+
Γi + V i(K0)

= F̂(K0)Γ̄
+
Γi − (F̂(K0)− F(K0)Γ̄)Γ̄

+
Γi + V i(K0)

= F̂ 0(K0)D
−1
N B−1Γ̄

+
Γi − V̄ (K0)Γ̄

+
Γi + V i(K0), (36)

and

1

T
X ′

i(K0)MX(K1)
X i(K0) =

1

T
X ′

i(K0)MF̂0(K1)
X i(K0)

=
1

T
X ′

i(K0)MF̂0(K0)
X i(K0)

+
1

T
X ′

i(K0)
[
MF̂0(K1)

−MF̂0(K0)

]
X i(K0) (37)

By following the proof of Lemma S.2 in Karabiyik et al. (2017), we

show that the first term above is as follows:

1

T
X ′

i(k
0
1, k

0
2)MF̂0(k03)

X i(k
0
1, k

0
2) =

1

T
V ′

i(k
0
1, k

0
2)V i(k

0
1, k

0
2) +Op(

1

N
) +Op(

1√
T
).
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Similarly, since

(MF̂0(k03)
−MF̂0(k01 ,k

0
2)
) =

1

T 2
F0(k01, k

0
2)

(
1

T 2
F0′(k01, k

0
2)F0(k01, k

0
2)

)+

F0′(k01, k
0
2)

− 1

T 2
F0(k03)

(
1

T 2
F0′(k03)F0(k03)

)+

F0′(k03) + op(1),

there exists at least [T×min{λ01, λ02, ..., λ0m}]2 elements equal to 0. Thus, given

equation (S62) of Karabiyik et al. (2017), ||MF̂0(k03)
−MF̂0(k01 ,k

0
2)
|| = Op(

1
T
),and

the second term in equation (37) above shrinks to 0 as T → ∞. Combining

these terms together, we show that

1

T
X i(k

0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2) =

1

T
V ′

i(k
0
1, k

0
2)V i(k

0
1, k

0
2) +Op(

1

N
) +Op(

1√
T
).

Proof of Proposition 1. Following equation (S17) of Karabiyik et al.

(2017), we obtain F̂(k03) = X(k03) = F(k03)Γ̄+ V̄ (k03). Thus,

F(k03) = X(k03)Γ̄
+ − V̄ (k03)Γ̄

+
. (38)

For the individual series i = 1, ..., N , plugging equation (38) into (14) gives,

Yi = X i(k
0
1, k

0
2)bi + F(k03)gi + εi

= X i(k
0
1, k

0
2)bi +X(k03)Γ̄

+
gi − V̄ (k03)Γ̄

+
gi + εi

= X i(k̂1, k̂2)bi + [X i(k
0
1, k

0
2)−X i(k̂1, k̂2)]bi

+X(k̂3)Γ̄
+
gi + [X(k03)−X(k̂3)]Γ̄

+
gi

+εi − V̄ (k03)Γ̄
+
gi. (39)

Plugging equation (39) above into the expression of b̂i gives,

b̂i = b̂i(k̂1, k̂2) = [X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2)]
−1X i(k̂1, k̂2)

′MX(k̂3)
Yi (40)

= bi + [X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2)]
−1

×
{
X i(k̂1, k̂2)

′MX(k̂3)
[X i(k

0
1, k

0
2)−X i(k̂1, k̂2)]bi

+X i(k̂1, k̂2)
′MX(k̂3)

[X(k03)−X(k̂3)]gi +X i(k̂1, k̂2)
′MX(k̂3)

εi

−X i(k̂1, k̂2)
′MX(k̂3)

V̄ (k03)Γ̄
+
gi

}
.
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Thus, we decompose
√
T (b̂i − bi) into six terms,

√
T (b̂i − bi) = [

1

T
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)]

−1

{
1√
T
X i(k

0
1, k

0
2)

′MX(k̂3)
εi

− 1√
T
[X i(k

0
1, k

0
2)−X i(k̂1, k̂2)]MX(k̂3)

εi

1√
T
X i

(
k01, k

0
2

)′
MX(k̂3)

V̄ (k03)Γ̄
+
gi

+
1√
T
[X i(k

0
1, k

0
2)−X i(k̂1, k̂2)]MX(k̂3)

V̄ (k03)Γ̄
+
gi

+
1√
T
X i(k̂1, k̂2)

′MX(k̂3)
[X i(k

0
1, k

0
2)−X i(k̂1, k̂2)]bi

+
1√
T
X i(k̂1, k̂2)

′MX(k̂3)
[X(k03)−X(k̂3)]gi

}
. (41)

Under Theorem 1, k̂1 − k01 = op(1), k̂2 − k02 = op(1), and k̂3 − k03 = op(1), for

each i, X i(k̂1, k̂2)
p→ X i(k

0
1, k

0
2) and MX(k̂3)

p→MX(k03)
. Thus, under Assumption

6 (ii),

1

T
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)−

1

T
X i(k

0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2)

p→ 0.

As in KPY, in the model considered in Case 1, after the transformation

using MX(k̂3)
, MX(k̂3)

X i(k̂1, k̂2) becomes stationary since I(1) ft is removed

asymptotically in regressors xit, as shown in Lemma 6, that is,

ΣX,i = plimT→∞
1

T
X i(k

0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2)

= plimT→∞
1

T
V ′

i(k
0
1, k

0
2)V i(k

0
1, k

0
2).

For the second term of equation (41) inside the curly braces, by Theorem 1,

P
(
k̂1 ̸= k01, k̂2 ̸= k02

)
= P

(
|k̂1 ̸= k01| ≥ 1, |k̂2 ̸= k02| ≥ 1

)
→ 0. For any η > 0,

P (||T−1/2[X i(k
0
1, k

0
2)−X i(k̂1, k̂2)]MX(k̂3)

εi|| > η)

= P (||T−1/2[X i(k
0
1, k

0
2)−X i(k̂1, k̂2)]MX(k̂3)

εi|| > η, k̂1 = k01, k̂2 = k02)

+P (||T−1/2[X i(k
0
1, k

0
2)−X i(k̂1, k̂2)]MX(k̂3)

εi|| > η, k̂1 ̸= k01, k̂2 ̸= k02)

= P (0 > η)P (k̂1 = k01, k̂2 = k02)

+P ( ||T−1/2[X i(k
0
1, k

0
2)−X i(k̂1, k̂2)]MX(k̂3)

εi|| > η
∣∣∣ k̂1 ̸= k01, k̂2 ̸= k02)P (k̂1 ̸= k01, k̂2 ̸= k02)

≤ P (0 > η)(k̂1 = k01, k̂2 = k02) + P (k̂1 ̸= k01, k̂2 ̸= k02) → 0.

Thus, T−1/2[X i(k
0
1, k

0
2) − X i(k̂1, k̂2)]MX(k̂3)

εi = op(1). Similar arguments show

that , T−1/2X i(k̂1, k̂2)
′MX(k̂3)

[X i(k
0
1, k

0
2)−X i(k̂1, k̂2)]bi = op(1) and T

−1/2[X i(k
0
1, k

0
2)−
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X i(k̂1, k̂2)]MX(k̂3)
V̄ (k03)Γ̄

+
gi = op(1), and

1√
T
X i(k̂1, k̂2)

′MX(k̂3)
[X(k03)−X(k̂3)]gi = op(1).

Thus, the expression
√
T (b̂i − bi) of equation (41) reduces to

√
T (b̂i − bi) = [

1

T
X i(k

0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2)]

−1[
1√
T
X i(k

0
1, k

0
2)

′MX(k03)
εi

− 1√
T
X i

(
k01, k

0
2

)′
MX(k03)

V̄ (k03)Γ̄
+
gi] + op(1).

Next, we need to consider the asymptotic distribution of

1√
T
X i(k

0
1, k

0
2)

′MX(k03)
εi −

1√
T
X i(k

0
1, k

0
2)

′MX(k03)
V̄ (k̂3)Γ̄

+
gi.

Our proof proceeds by following that of Theorem 3 of Karabiyik et al.

(2017). First, consider

1√
T
X i(k

0
1, k

0
2)

′MX(k03)
εi = QNT +

1√
T
X i(k

0
1, k

0
2)

′[MX(k03)
−MX(k01 ,k

0
2)
]εi (42)

where

QT =
1√
T
X i(k

0
1, k

0
2)

′MF̂0(k01 ,k
0
2)
εi

=
1√
T
[V i(k

0
1, k

0
2)

′ − Γ′
i(Γ̄

′
)+V̄ ′(k01, k

0
2)]εi

− 1√
T
[V i(k

0
1, k

0
2)

′ − Γ′
i(Γ̄

′
)+V̄ ′(k01, k

0
2)]PF0(k01 ,k

0
2)
εi

+
1√
T
[V i(k

0
1, k

0
2)

′ − Γ′
i(Γ̄

′
)+V̄ ′(k01, k

0
2)][MF̂0(k01 ,k

0
2)
−MF0(k01 ,k

0
2)
]εi

= Q0T −Q1T +Q2T .

Since

|| 1√
T
X i(k

0
1, k

0
2)

′[MX(k03)
−MX(k01 ,k

0
2)
]εi|| ≤

√
T || 1

T
X i(k

0
1, k

0
2)

′εi|| × ||MX(k03)
−MX(k01 ,k

0
2)
||

=
√
TOP (1)Op(

1

T
) = Op(

1√
T
),

we focus on QT = Q0T −Q1T +Q2T . By Lemma 5(iii), we have

Q0T =
1√
T
V i(k

0
1, k

0
2)

′εi +
1√
T
Γi(Γ̄

′
)+V̄ (k01, k

0
2)

′εi

=
1√
T
V i(k

0
1, k

0
2)

′εi +Op(

√
T

N
) +Op(

1√
N
).
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Similarly, by Lemma5(iii) and (iv),

||Q1T || =
1√
T
||[V i(k

0
1, k

0
2)

′ − Γi(Γ̄
+
)′V̄ (k01, k

0
2)

′]PF0(k01 ,k
0
2)
εi||

≤ 1√
T
|| 1
T
V i(k

0
1, k

0
2)

′F0(k01, k
0
2)][

1

T 2
F0′(k01, k

0
2)F0(k01, k

0
2)]

−1[
1

T
F0′(k01, k

0
2)εi]||

+
1√
T
||Γi(Γ̄

+
)′
1

T
V̄ (k01, k

0
2)

′F0(k01, k
0
2)][

1

T 2
F0′(k01, k

0
2)F0(k01, k

0
2)]

−1[
1

T
F0′(k01, k

0
2)εi]||

= Op(
1√
T
) +Op(

1√
TN

) = Op(
1√
T
).

For the term Q2T , according to equation (S29) of Karabiyik et al. (2017),

we first obtain that

T 2(MF̂0(k01 ,k
0
2)
−MF0(k01 ,k

0
2)
)

=T V̄ 0
−(m1+1)q(k

0
1, k

0
2)[

1

T
V̄ 0
−(m1+1)q(k

0
1, k

0
2)

′V̄ 0
−(m1+1)q(k

0
1, k

0
2)]

+V̄ 0
−(m1+1)q(k

0
1, k

0
2)

′

+V̄ 0
(m1+1)q(k

0
1, k

0
2)(

1

T 2
F(k01, k02)′F(k01, k02))+V̄ 0

(m1+1)q(k
0
1, k

0
2)

′

+V̄ 0
(m1+1)q(k

0
1, k

0
2)(

1

T 2
F(k01, k02)′F(k01, k02))+F(k01, k02)′

+F(k01, k02)′(
1

T 2
F(k01, k02)′F(k01, k02))+V̄ 0

(m1+1)q(k
0
1, k

0
2)

+F̂0(k01, k
0
2)[(

1

T 2
F̂0(k01, k

0
2)

′F̂0(k01, k
0
2))

+ − Σ+
F0 ]F̂0(k01, k

0
2)

′, (43)

where ΣF0 =

[
1
T 2F(k01, k02)′F(k01, k02) 0[(m1+1)q]×[(m1+1)(q−p)]

0[(m1+1)(q−p)]×[(m1+1)q]
1
T
V̄ 0
−(m1+1)q(k

0
1, k

0
2)

′V̄ 0
−(m1+1)q(k

0
1, k

0
2)

]
.

We plug the above expression (43) into Q2T ,

Q2T =
1√
T
Vi(k

0
1, k

0
2)

′(MF̂0(k01 ,k
0
2)
−MF0(k01 ,k

0
2)
)εi

− 1√
T
Γi(Γ̄

+
)′V̄ (k01, k

0
2)

′(MF̂0(k01 ,k
0
2)
−MF0(k01 ,k

0
2)
)εi

=Q2T,1 −Q2T,2.
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First,

Q2T,1 =
1

T 2
√
T
Vi(k

0
1, k

0
2)

′T 2(MF̂0(k01 ,k
0
2)
−MF0(k01 ,k

0
2)
)εi

=[
1

T
Vi(k

0
1, k

0
2)

′V̄ 0
−(m1+1)q(k

0
1, k

0
2)][

1

T
V̄ 0
−(m1+1)q(k

0
1, k

0
2)

′V̄ 0
−(m1+1)q(k

0
1, k

0
2)]

+

× [
1√
T
V̄ 0
−(m1+1)q(k

0
1, k

0
2)

′εi]

+
1√
T
[
1

T
Vi(k

0
1, k

0
2)

′V̄ 0
(m1+1)q(k

0
1, k

0
2)](

1

T 2
F(k01, k02)′F(k01, k02))+[

1

T
V̄ 0
(m1+1)q(k

0
1, k

0
2)

′εi]

+
1√
T
[
1

T
Vi(k

0
1, k

0
2)

′V̄ 0
(m1+1)q(k

0
1, k

0
2)](

1

T 2
F(k01, k02)′F(k01, k02))+[

1

T
F(k01, k02)′εi]

+
1√
T
[
1

T
Vi(k

0
1, k

0
2)

′F(k01, k02)′](
1

T 2
F(k01, k02)′F(k01, k02))+[

1

T
V̄ 0
(m1+1)q(k

0
1, k

0
2)εi]

+
1√
T
[
1

T
Vi(k

0
1, k

0
2)

′F̂0(k01, k
0
2)][(

1

T 2
F̂0(k01, k

0
2)

′F̂0(k01, k
0
2))

+ − Σ+
F0 ][

1

T
F̂0(k01, k

0
2)

′εi].

According to Lemma 5 (iii) and (iv), ||Q2T,1|| = Op(
1√
T
). Similar argument

show that ||Q2T,2|| = Op(
√
T

N
) + Op(

1√
N
). Thus, ||Q2T || = Op(

√
T

N
) + Op(

1√
N
) +

Op(
1√
T
).

According to Lemma 5(ii), 1
T
X i(k

0
1, k

0
2)

′MX(k03)
V̄ (k03) = Op(N

−1), T−1/2X i(k
0
1, k

0
2)

′MX(k03)
V̄ (k03) =

Op

(
T 1/2N−1

)
, thus, the third term

||T−1/2X i(k
0
1, k

0
2)

′MX(k03)
V̄ (k03)Γ̄

+
gi|| = Op(T

1/2N−1).

Combining all these terms together, we obtain

√
T (b̂i−bi) = [

1

T
X i(k

0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2)]

−1 1√
T
V i(k

0
1, k

0
2)

′εi+Op

(
T 1/2N−1

)
+op (1) .

According to Lemma 6,

ΣX,i = plimT→∞
1

T
X i(k

0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2)

= plimT→∞
1

T
V i(k

0
1, k

0
2)

′V i(k
0
1, k

0
2)

and then

ΣXε,i = plimT→∞
1

T
V i(k

0
1, k

0
2)

′Σε,iV i(k
0
1, k

0
2)

′,

as T 1/2N−1 → 0, we obtain
√
T (b̂i − bi)

d→ N(0,Σ−1
X,iΣXε,iΣ

−1
X,i).
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Proof of Proposition 2. Under Assumption 4, the asymptotic distribution of

mean-group estimator can be derived similarly. Thus, we obtain

√
N
(
b̂MG − b

)
= N−1/2

∑N
i=1vb,i

+
1√
N

∑N
i=1[

1

T
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)]

−1 1

T
X i(k

0
1, k

0
2)

′MX(k̂3)
εi

+
1√
N

∑N
i=1[

1

T
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)]

−1 1

T
[X i(k̂1, k̂2)−X i(k

0
1, k

0
2)]

′MX(k̂3)
εi

+
1√
N

∑N
i=1[

1

T
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)]

−1 1

T
X i(k̂1, k̂2)

′MX(k̂3)
[X i(k̂1, k̂2)−X i(k

0
1, k

0
2)]bi

+
1√
N

∑N
i=1[

1

T
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)]

−1 1

T
X i(k̂1, k̂2)

′MX(k̂3)
[X(k03)−X(k̂3)]gi

+
1√
N

∑N
i=1[

1

T
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)]

−1 1

T
X i(k̂1, k̂2)

′MX(k̂3)
V̄ (k03)Γ̄

+
gi.

By Assumption 4, the limiting distribution of the first term is N(0,Σb). For the

second term, equation (42) in the Proof of Proposition 1 implies that

1

T
X i(k

0
1, k

0
2)

′MX(k03)
εi =

1√
T
(

1√
T
Vi(k

0
1, k

0
2)

′εi +Op(
1√
N
) +Op(

1√
T
)) = Op(

1√
T
),

as (N, T ) → ∞. Thus, E[ 1
T
X i(k

0
1, k

0
2)

′MX(k03)
εiε

′
iMX(k̂3)

X i(k
0
1, k

0
2)] = O( 1

T
), and

V ar(N−1/2
∑N

i=1[T
−1X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)]

−1T−1X i(k
0
1, k

0
2)

′MX(k̂3)
εi)

=
1

NT

∑N
i=1(T

−1X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2))
−1(T−1X i(k

0
1, k

0
2)

′MX(k̂3)
V ar(εi)MX(k̂3)

X i(k
0
1, k

0
2))

× (T−1X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2))
−1 = Op(T

−1).

Thus, N−1/2
∑N

i=1[T
−1X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)]

−1T−1X i(k
0
1, k

0
2)

′MX(k̂3)
εi = Op(T

−1/2).

Similarly, the last term is Op(N
−1/2T−1).

As in the proof of Proposition 1, the second, third and fourth terms are also

op(1). According to Lemma 5(ii) and o the definition of RNT in the equation

(S21) of Karabiyik et al. (2017), we can follow the proof of Lemma S.1 of

Karabiyik et al. (2017) to show that

1

T
√
N

∑N
i=1X i(k

0
1, k2)

′MX(k̂3)
V̄ (k03) = Op(

1

N
)

without any restriction on the rate at which N and T tend to infinity.

Therefore, as (N, T ) → ∞,

√
N(b̂MG − b) = N−1/2

∑N
i=1vb,i + op(1)

d→ N (0,Σb) .

A.4 Proofs of Propositions 3, 4
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Proof of Proposition 3. We will show that the convergence rate of b̂i is T .

From equation (34), T (b̂i − bi) can be decomposed into five terms,

T (b̂i − bi) = [T−2X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2)]
−1 1

T
X i(k

0
1, k

0
2)

′MX(k̂3)
εi

−[T−2X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2)]
−1 1

T
[X i(k

0
1, k

0
2)−X i(k̂1, k̂2)]MX(k̂3)

εi

−[T−2X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2)]
−1 1

T
X i(k̂1, k̂2)

′MX(k̂3)
V̄ (k03)Γ̄

+
gi

+[T−2X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2)]
−1 1

T
[X i(k

0
1, k

0
2)−X i(k̂1, k̂2)]

′MX(k̂3)
V̄ (k03)Γ̄

+
gi

+[T−2X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2)]
−1 1

T
X i(k̂1, k̂2)

′MX(k̂3)
[X i(k

0
1, k

0
2)−X i(k̂1, k̂2)]bi.

Under Theorem 2, k̂1 − k01 = op(1), k̂2 − k02 = op(1) and k̂3 − k03 = op(1), for each i,

X i

(
k̂1, k̂2

)
−X i (k

0
1, k

0
2)

p→ 0 and MX(k̂3)

p→ MX(k03)
. Thus, similar to equation (37)

in the proof of Proposition 1, except the first term, the other four terms above are

op (1), i.e.,

T (b̂i − bi) = [T−2X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2)]
−1T−1X i

(
k̂1, k̂2

)′
MX(k̂3)

εi + op (1) .

Thus, to prove Proposition 3, we need to show that the first term above converges

weakly to a non-degenerate distribution. Given that

T−2X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2)− T−2X i(k
0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2)

p→ 0,

it is equivalent to show that
[

1
T 2X i(k

0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2)
]−1

1
T
X i (k

0
1, k

0
2)

′
MX(k03)

εi

converges weakly to a non-degenerate distribution.

Following Phillips and Moon (1999), we will show that as T → ∞,

1

T 2
X i(k

0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2) ⇒ Gi,

1

T
X i

(
k01, k

0
2

)′
MX(k03)

εi ⇒ Hi,

where Gi and Hi are two non-degenerate distributions, respectively, which will be

specified below. Therefore, as T → ∞, T (b̂i − bi) ⇒ G−1
i Hi.

Consider the term 1
T 2X i(k

0
1, k

0
2)

′MX(k03)
X i(k

0
1, k

0
2) first. DenoteX i(k

0
1, k

0
2) = diag (Xi1, Xi2, Xi3)

withXi1(k
0
1)

(k01×p)

= (xi1, ..., xi,k01)
′,Xi2(k

0
1, k

0
2)

(k02−k01)×p

= (xi,k01+1, ..., xik02)
′, Xi3(k

0
2)

(T−k02)×p

= (xi,k02+1, ..., xiT )
′.

F1 = (f1, ..., fk01)
′, F2 = (fk01+1, ..., fk02)

′, and F3 = (fk02+1, ..., fT )
′, and Vi1, Vi2, Vi3, ε1i,

ε2i, ε3i are similarly defined. Thus,X i(k
0
1, k

0
2) = diag(F1Γi+Vi1, F2Γi+Vi2, F3Γi+Vi3).

Let F4 = (f1, ..., fk03)
′ and F5 = (fk03+1, ..., fT )

′, we define F(k03) = diag(F4, F5),

and V̄(k03) = diag(V̄1, V̄2) with V̄1 = (v̄1, ..., v̄k03)
′ and V̄2 = (v̄k03+1, ..., v̄T )

′. When
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the rank condition is satisfied and X(k03) = F(k03)Γ̄ + V̄(k03), MX(k03)
X i(k

0
1, k

0
2) =

MF(k03)X i(k
0
1, k

0
2) + op(1), as (N, T ) → ∞. Thus,

T−2X i(k
0
1, k

0
2)

′MF(k03)X i(k
0
1, k

0
2)

= T−2diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)
′ × diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)

− [T−2diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)
′F(k03)](T−2F′(k03)F(k03))−1

× [T−2F′(k03)diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)]. (44)

According to Phillips and Moon (1999, P.1062), under Assumption 12, for any

0 ≤ τ1 ≤ τ2 ≤ 1,

T−2
∑[τ2T ]

[τ1T ]vitv
′
it ⇒ Ψi(1)Pi(

∫ τ2

τ1

Wς,iW
′
ς,i)P

′
iΨi(1)

′ =

∫ τ2

τ1

Bς,iB
′
ς,i, (45)

where Bς,i is a Brownian motion with covariance Ψi(1)PiP
′
iΨi(1)

′. Similarly, under

Assumptions 5, 12 and 13,

T−2
∑[τ2T ]

[τ1T ]ftf
′
t ⇒ Π(1)Q(

∫ τ2

τ1

WφW
′
φ)Q

′Π(1)′ =

∫ τ2

τ1

BφB
′
φ, (46)

T−2
∑[τ2T ]

[τ1T ]ftv
′
it ⇒ Π(1)Q(

∫ τ2

τ1

WφW
′
ς,i)P

′
iΨi(1)

′ =

∫ τ2

τ1

BφB
′
ς,i. (47)

In addition, under Assumptions 5, 8, and Lemma 8 of Phillips and Moon (1999),

T−1
∑[dT ]

[cT ]ftεit ⇒ Π(1)Q(

∫ d

c

Wφd(Wε.i))σi +
∑∞

t=0

∑∞
s=0E(φtεi,t+s)

=

∫ d

c

Bφd(Bε.i) +
∑∞

t=0

∑∞
s=0E(φtεi,t+s). (48)

Moreover, under Assumptions 5, 12 and 13,

T−1
∑[dT ]

[cT ]vitεit ⇒ Ψi(1)Pi(

∫ d

c

Wς,id(Wε.i))σi +
∑∞

t=0

∑∞
s=0E(ςitεi,t+s)

=

∫ d

c

Bς,id(Bε,i) +
∑∞

t=0

∑∞
s=0E(ςitεi,t+s). (49)

Consider the first term in equation (44) above,

T−2diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)
′ × diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)

=T−2diag ((F1Γi + Vi1)
′(F1Γi + Vi1), (F2Γi + Vi2)

′(F2Γi + Vi2), (F3Γi + Vi3)
′(F3Γi + Vi3)) .

According to equations (45)-(47),

T−2(FjΓi+Vj1)
′(FjΓi+Vij) ⇒ Γ′

i

∫ λ0
j

λ0
j−1

BφB
′
φΓi+(

∫ λ0
j

λ0
j−1

Bς,iB
′
φ)Γi+Γ′

i(

∫ λ0
j

λ0
j−1

BφB
′
ς,i)+

∫ λ0
j

λ0
j−1

Bς,iB
′
ς,i,

17



for j = {1, 2, 3} with λ00 = 0 and λ03 = 1. Thus,

T−2diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)
′ · diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)

⇒diag(Γ′
i

∫ λ0
1

0

BφB
′
φΓi + (

∫ λ0
1

0

Bς,iB
′
φ)Γi + Γ′

i(

∫ λ0
1

0

BφB
′
ς,i) +

∫ λ0
1

0

Bς,iB
′
ς,i,

Γ′
i

∫ λ0
2

λ0
1

BφB
′
φΓi + (

∫ λ0
2

λ0
1

Bς,iB
′
φ)Γi + Γ′

i(

∫ λ0
2

λ0
1

BφB
′
ς,i) +

∫ λ0
2

λ0
1

Bς,iB
′
ς,i,

Γ′
i

∫ 1

λ0
2

BφB
′
φΓi + (

∫ 1

λ0
2

Bς,iB
′
φ)Γi + Γ′

i(

∫ 1

λ0
2

BφB
′
ς,i) +

∫ 1

λ0
2

Bς,iB
′
ς,i) ≡ Gi1.

Similarly, according to equations (46) and (47), the second term in equation (44)

T−2diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)
′F(k03)

=T−2
(
F ′
1F(k03)Γi + F′(k03)Vi1, F

′
2F(k03)Γi + F′(k03)Vi2, F

′
3F(k03)Γi + F′(k03)Vi3

)′
.

Next, we derive the limiting distributions of the terms above. Without loss of

generality, we assume that k01 < k02 < k03 and define F∆ = (fk02+1, · · · , fk03)
′. Since

F(k03) = diag(F4, F5),

T−2diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)
′diag(F4, F5)

=
1

T 2


Γ′
iF

′
1 + V ′

i1
p×k01

Γ′
iF

′
2 + V ′

i2
p×(k02−k01)

Γ′
iF

′
3 + V ′

i3
p×(T−k02)


 F4

k03×q

F5
(T−k03)×q



=

 1
T 2Γ

′
iF

′
1F1 +

1
T 2V

′
i1F1 0p×q

1
T 2Γ

′
iF

′
2F2 +

1
T 2V

′
i2F2 0p×q

1
T 2Γ

′
iF

′
∆F∆ + 1

T 2V
′
i∆F∆

1
T 2Γ

′
iF

′
5F5 +

1
T 2V

′
i5F5

 ,

then

T−2diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)
′diag(F4, F5)

⇒


Γ′
i

∫ λ0
1

0
BφB

′
φ +

∫ λ0
1

0
Bς,iB

′
φ 0p×q

Γ′
i

∫ λ0
2

λ0
1
BφB

′
φ +

∫ λ0
2

λ0
1
Bς,iB

′
φ 0p×q

Γ′
i

∫ λ0
3

λ0
2
BφB

′
φ +

∫ λ0
3

λ0
2
Bς,iB

′
φ Γ′

i

∫ 1

λ0
3
BφB

′
φ +

∫ 1

λ0
3
Bς,iB

′
φ

 ≡ Gi2.

In addition, T−2F′(k03)F(k03) = T−2diag(F ′
4F4, F

′
5F5) ⇒ diag(

∫ λ0
3

0
BφB

′
φ,
∫ 1

λ0
3
BφB

′
φ).

Thus, we obtain

T−2X i(k
0
1, k

0
2)

′MF(k03)X i(k
0
1, k

0
2) (50)

⇒Gi1 −Gi2diag

(
(

∫ λ0
3

0

BφB
′
φ)

−1, (

∫ 1

λ0
3

BφB
′
φ)

−1

)
G′

i2 ≡ Gi.

18



Likewise, 1
T
F(k03)′εi = 1

T
diag(F ′

4, F
′
5)εi ⇒ diag

(∫ k03
0
Bφd(Bε.i),

∫ 1

k03
Bφd(Bε.i)

)
and

then

T−1X i

(
k01, k

0
2

)′
MX(k03)

εi
p→ T−1X i

(
k01, k

0
2

)′
MF(k03)εi

= T−1diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)
′εi

− T−1diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)
′F(k03)(F(k03)′F(k03))−1F(k03)εi

=

 T−1Γ′
iF

′
1ε1i + T−1V ′

i1ε1i
T−1Γ′

iF
′
2ε2i + T−1V ′

i2ε2i
T−1Γ′

iF
′
3ε3i + T−1V ′

i3ε3i


−T−2diag(F1Γi + Vi1, F2Γi + Vi2, F3Γi + Vi3)

′F(k03)
(
T−2F(k03)′F(k03)

)−1
(
1

T
F(k03)′εi

)
.

According to equations (46), (48), and (49),

T−1X i

(
k01, k

0
2

)′
MX(k03)

εi (51)

⇒


Γ′
i

∫ λ0
1

0
Bφd(Bε.i) + Γ′

i

∑∞
t=0

∑∞
s=0E (φtεi,t+s) +

∫ λ0
1

0
Bς,id(Bε.i) +

∑∞
t=0

∑∞
s=0E (ςit, εi,t+s)

Γ′
i

∫ λ0
2

λ0
1
Bφd(Bε.i) + Γ′

i

∑∞
t=0

∑∞
s=0E (φtεi,t+s) +

∫ λ0
2

λ0
1
Bς,id(Bε.i) +

∑∞
t=0

∑∞
s=0E (ςit, εi,t+s)

Γ′
i

∫ λ0
2

λ0
1
Bφd(Bε.i) + Γ′

i

∑∞
t=0

∑∞
s=0E (φtεi,t+s) +

∫ λ0
2

λ0
1
Bς,id(Bε.i) +

∑∞
t=0

∑∞
s=0E (ςit, εi,t+s)


−Gi1diag

(
(

∫ λ0
3

0

BφB
′
φ)

−1, (

∫ 1

λ0
3

BφB
′
φ)

−1

)

× diag

(∫ k03

0

Bφd(Bε.i) +
∞∑
t=0

∞∑
s=0

E (φtεi,t+s) ,

∫ 1

k03

Bφd(Bε.i) +
∞∑
t=0

∞∑
s=0

E (φtεi,t+s)

)
≡ Hi.

(52)

Proof of Proposition 4. By the same argument in the proof of Proposition 2,

we can obtain equation (20),

√
N
(
b̂MG − b

)
=

1√
N

N∑
i=1

vb,i+
1√
NT

N∑
i=1

[(
1

T 2
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)

)−1
1

T
X i(k̂1, k̂2)

′MX(k̂3)
εi

]
+op (1) .

In a special case of homogeneous slopes bi = b with vb,i = 0, we have,

√
NT

(
b̂MG − b

)
=

1√
N

N∑
i=1

[(
1

T 2
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)

)−1
1

T
X i(k̂1, k̂2)

′MX(k̂3)
εi

]
+op (1) .

As in the proof of Proposition 3 above,
(

1
T 2X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)

)−1
1
T
X i(k̂1, k̂2)

′MX(k̂3)
εi

weakly converges a non-degenerate distribution G−1
i Hi.

Under the assumptions that εit, φs, ςjt′ are independent for all (i, j) and (t, s, t′),

and E(εit) = 0, E
[
1
T
X i(k̂1, k̂2)

′MX(k̂3)
εi

]
= 0. Thus,

√
NT

(
b̂MG − b

)
is consistent,
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as (N, T ) → ∞. In addition, under the assumption cross-sectional independence

of εit, G
−1
i Hi are independent across i. Thus, by the Central Limit Theory, the

limiting distribution of
√
NT

(
b̂MG − b

)
is multivariate normal, i.e., as (N, T ) →

∞,
√
NT

(
b̂MG − b

)
d→ N(0,ΣMG). Next, we derive the expression of ΣMG. For

simplicity, asymptotic bias mentioned in Theorem 8 of Phillips and Moon (1999)

and Proposition 1 of Bai, Ng and Kao (2009) disappears here under the assumptions

of no serial/ cross-sectional correlation and heteroskedasticity.

Let wit = (εit, φ
′
t, ς

′
it)

′. Denote the long-run covariance matrix of wit, partitioned

comfortably for wit, by

Ωi =
∞∑

j=−∞

E(wi0w
′
ij) =

 Ωε.i Ωεφi Ωεςi

Ωφεi Ωφ Ωφςi

Ωςεi Ωςφi Ως.i

.
Denote L1 ∼ N(0, Ir) and L2 ∼ N(0, Ip). thus, as T → ∞, 1

T
F ′εi ⇒

∫ 1

0
Bφd(Bε.i) ≡

ξi1
r×1

∼ Ω
1/2
ε.i Ω

1/2
φ × L1,

1
T
V ′
i εi ⇒

∫ 1

0
Bς,id(Bε.i) ≡ ξi2

p×1
∼ Ω

1/2
ε.i Ω

1/2
ς.i × L2, where ξi1 and

ξi2 are Gaussian processes, independent across i. Similarly, as T → ∞,

1

T 2
V ′
i F1 ⇒

∫ 1

0

BφB
′
ς,i ≡ ξi3

p×r
,

1

T 2
F ′F ⇒

∫ 1

0

BφB
′
φ ≡ ξ4

r×r
,

1

T 2
V ′
i Vi ⇒

∫ 1

0

Bς,iB
′
ς,i ≡ ξi5

p×p

where ξi3, ξi4 and ξi5 are Gaussian processes. The proof of Proposition 3 above shows,

1
T 2X i(k

0
1, k

0
2)

′MF(k03)X i(k
0
1, k

0
2) ⇒ Gi.According to the definitions of ξi1, ξi2, ξi3, ξ4, and

let λ =

 λ01 0
λ02 − λ01 0
λ03 − λ02 1− λ03

 , we obtain

Gi = diag(λ01, λ
0
2 − λ01, 1− λ02)⊗ (Γ′

iξ4Γi + ξi3Γi + Γ′
iξ

′
i3 + ξi5)

−

 Γ′
iλ

0
1ξ4 + λ01ξi3 0p×r

Γ′
i(λ

0
2 − λ01)ξ4 + (λ02 − λ01)ξi3 0p×r

Γ′
i(λ

0
3 − λ02)ξ4 + (λ03 − λ02)ξi3 Γ′

i(1− λ03)ξ4 + (1− λ03)ξi3

( λ03ξ4
(1− λ03)ξ4

)−1

×

 Γ′
iλ

0
1ξ4 + λ01ξi3 0p×r

Γ′
i(λ

0
2 − λ01)ξ4 + (λ02 − λ01)ξi3 0p×r

Γ′
i(λ

0
3 − λ02)ξ4 + (λ03 − λ02)ξi3 Γ′

i(1− λ03)ξ4 + (1− λ03)ξi3

′

=diag(λ01, λ
0
2 − λ01, 1− λ02)⊗ (Γ′

iξ4Γi + ξi3Γi + Γ′
iξ

′
i3 + ξi5)

− [λ⊗ (Γ′
iξ4 + ξi3)] diag((λ

0
3ξ4)

−1, ((1− λ03)ξ4)
−1) [λ⊗ (Γ′

iξ4 + ξi3)]
′
.

Similarly, since 1
T
X i (k

0
1, k

0
2)

′
MX(k03)

εi ⇒ Hi and

Hi =

 λ01Γ
′
iξi1 + λ01ξi2

(λ02 − λ01)Γ
′
iξi1 + (λ02 − λ01)ξi2

(1− λ02)Γ
′
iξi1 + (1− λ02)ξi2

− [λ⊗ (Γ′
iξ4 + ξi3)] diag((λ

0
3ξ4)

−1, ((1− λ03)ξ4)
−1)ξi1
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Therefore,

ΣMG = lim
N→∞

1

N

N∑
i=1

E[(T−2X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2))
−1(T−1X i(k̂1, k̂2)

′MX(k̂3)
εi)

(53)

× (T−1ε′iMX(k̂3)
X i(k̂1, k̂2)

′)(T−2X i(k̂1, k̂2)
′MX(k̂3)

X i(k̂1, k̂2))
−1]

= lim
N→∞

1

N

N∑
i=1

E(G−1
i HiH

′
iG

−1
i )

Following Phillips and Moon (1999, p. 1081), we can estimate consistently ΣMG

by plugging the residuals ε̂i into equation (53) above,

Σ̂MG =
1

N

N∑
i=1

[(
1

T 2
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)

)−1(
1

T
X i(k̂1, k̂2)

′MX(k̂3)
ε̂i

)

×
(
1

T
ε̂′iMX(k̂3)

X i(k̂1, k̂2)

)(
1

T 2
X i(k̂1, k̂2)

′MX(k̂3)
X i(k̂1, k̂2)

)−1
]
,

where ε̂i = Yi − X i(k̂1, k̂2)b̂MG. In this special case of bi = b, we use the efficient

estimator b̂MG instead of b̂i. In addition, the term X̄γ∗i (k
0
3) in equation (39) will be

partialled out by MX̄ in the expression above.
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Appendix B: Proofs of Lemmas
In this appendix, we provide detailed proofs of technical lemmas used in Appendix

A. Lemma 1 is used to prove Lemma 2 and Theorem 1. Lemma 3 is used to prove

Lemma 4 and Theorem 2.

We remind readers of the nontrivial notation that for the interval t ∈ [k1 + 1, k2],

Yi⋆ = (0, ..., 0, yi,k1+1, ..., yi,k2 , 0, ..., 0)
′, Zi⋆ = (0, ..., 0, zi,k1+1, ..., zi,k2 , 0, ..., 0)

′ , ε∗i⋆ =

(0, ..., 0, ε∗i,k1+1, ..., ε
∗
i,k2
, 0, ..., 0)′ and V̄⋆ = (0, · · · , 0, v̄k1+1, ..., v̄k2 , 0, · · · , 0)

′. In addi-

tion, let Zi∆ = (0, ..., 0, zi,k1+1, ..., zi,k02 , 0, ..., 0)
′, Z0i⋆ = (0, ..., 0, zi,k01+1, ..., zi,k2 , 0, ..., 0)

′.

Similarly, for the interval t ∈ [1, k01], Zi♢ = (zi,1, ..., zi,k01 , 0, ..., 0)
′, Yi♢ = (yi,1, ..., yi,k01 , 0, ..., 0)

′

and ε∗i♢ = (ε∗i,1, ..., ε
∗
i,k01
, 0, ..., 0)′. As in BFK (2016), here we assume that

∣∣∣k̂1 − k01

∣∣∣ ,∣∣∣k̂2 − k02

∣∣∣ and ∣∣∣k̂3 − k03

∣∣∣ are bounded for simplicity. Under Assumption 1 and that

the estimators of break fractions are consistent, we only consider the set K(Ck) ={
(k1, k2, k3) : 1 ≤

∣∣kj − k0j
∣∣ , ∣∣kj − k0j

∣∣ ≤ Ck, aT ≤ kj ≤ (1− a)T, j = (1, 2, 3)
}
for a fi-

nite constant Ck and a > 0.

Lemma 1. Under Assumptions 1-5, 7,8, and uniformly overK (Ck) , as (N, T ) →
∞, for i = 1, ..., N,

(i) 1
T
Z ′

i∆Zi∆ = Op (1),
1
T 2Z

′
i⋆Zi⋆ = Op (1);

(ii) 1√
T
Z ′

i∆εi⋆ = 1√
T
Z ′

i∆εi∆ = Op (1),
1
T
Z ′

i⋆εi⋆ = Op (1);

(iii) 1√
T
Z ′

i∆εi♢ = 1√
T
Z ′

i∆εi∆ = Op (1),
1
T
Z ′

i♢εi♢ = Op (1);

(iv) 1
T
V̄ ′
⋆V̄⋆ = Op

(
1
N

)
, 1√

T
Z ′

i∆V̄⋆ = Op

(
1√
N

)
, 1

T
Z ′

i⋆V̄⋆ = Op

(
1√
N

)
.

Proof of Lemma 1. (i) According to Lemma 1(b) in the supplementary ap-

pendix of Baltagi, Kao and Liu (2017), for any 0 ≤ τ1 < τ2 ≤ 1 and under Assump-

tion 5,

1

T 2

[τ2T ]∑
t=[τ1T ]

ftf
′
t = Op (τ2 − τ1) . (54)

In addition, according to Lemma 1(a) in the supplementary appendix of Baltagi,

Kao and Liu (2017), for any 0 ≤ τ1 < τ2 ≤ 1 and under Assumption 9,

1

T

[τ2T ]∑
t=[τ1T ]

vitv
′
it = Op (τ2 − τ1) . (55)
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Plugging xit = Γ′
ift + vit into Xi∆ gives

1

T
X ′

i∆Xi∆ =
1

T

∑[λ0
1T ]

t=[λ1T ]xitx
′
it =

1

T

∑[λ0
1T ]

t=[λ1T ] (Γ
′
ift + vit) (Γ

′
ift + vit)

′

=
1

T

∑[λ0
1T ]

t=[λ1T ]Γ
′
iftf

′
tΓi +

1

T

∑[λ0
1T ]

t=[λ1T ]vitv
′
it

+
1

T

∑[λ0
1T ]

t=[λ1T ]Γ
′
iftv

′
it +

1

T

∑[λ0
1T ]

t=[λ1T ]vitf
′
tΓi.

Since |k1 − k01| is bounded, |λ1 − λ01| = Op

(
1
T

)
. Let F∆ =

(
0 · · · 0, fk1+1, · · · , fk01 , 0 · · · 0

)′
.

According to equation (49) and |λ1 − λ01| = Op

(
1
T

)
, 1

T
F ′
∆F∆ = Op (1) under As-

sumption 1. Thus, 1
T

∑[λ0
1T ]

t=[λ1T ] Γ
′
iftf

′
tΓi = Op(1), under Assumption 3 that Γi is

bounded. From equation (50) and |λ1 − λ01| = Op

(
1
T

)
, 1

T

∑[λ0
1T ]

t=[λ1T ] vitv
′
it = Op

(
1
T

)
.

Let Vi∆ =
(
0 · · · 0, vi,k1+1, · · · , vi,k01 , 0 · · · 0

)
, V ar

(
1
T
F ′
∆Vi∆

)
= O (1) under Assump-

tion 9. Thus, 1√
T

∑[λ0
1T ]

t=[λ1T ] Γ
′
iftv

′
it = Op (1) and 1√

T

∑[λ0
1T ]

t=[λ1T ] vitf
′
tΓi = Op (1). Thus,

1
T
X ′

i∆Xi∆ = Op(1) +Op

(
1
T

)
= Op (1).

Plugging x̄t = Γ̄′ft + v̄t into X̄∆ gives,

1

T
X̄ ′

∆X̄∆ =
1

T

∑[λ0
1T ]

t=[λ1T ]x̄tx̄
′
t =

1

T

∑[λ0
1T ]

t=[λ1T ](Γ̄
′ft + v̄t)(Γ̄

′ft + v̄t)
′

= Γ̄′(
1

T

∑[λ0
1T ]

t=[λ1T ]ftf
′
t)Γ̄ +

1

T

∑[λ0
1T ]

t=[λ1T ]v̄tv̄
′
t

+
1

T

∑[λ0
1T ]

t=[λ1T ]v̄tf
′
tΓi +

1

T

∑[λ0
1T ]

t=[λ1T ]Γ̄
′ftv̄

′
t.

According to equation (49), Γ̄′
(

1
T

∑[λ0
1T ]

t=[λ1T ] ftf
′
t

)
Γ̄ = Op(1), under Assumption 3

that Γ̄ is bounded and |λ1 − λ01| = Op

(
1
T

)
. Under Assumption 9, we have E ∥v̄t∥2 =

1
N2

∑N
i=1E ∥vit∥2 = O

(
1
N

)
. Also, E

∥∥∥ 1
T

∑[λ0
1T ]

t=[λ1T ] v̄tv̄
′
t

∥∥∥ ≤ 1
T

∑k01
t=k1

(
E ∥v̄t∥2

)
= O

(
1

NT

)
and then 1

T

∑[λ0
1T ]

t=[λ1T ] v̄tv̄
′
t = Op

(
1

NT

)
. Similarly, 1

T

∑[λ0
1T ]

t=[λ1T ] v̄tf
′
tΓi = Op

(
1√
NT

)
and

1
T

∑[λ0
1T ]

t=[λ1T ] Γ̄
′ftv̄

′
t =Op

(
1√
NT

)
. Thus, 1

T
X̄ ′

∆X̄∆ = Op(1) +Op

(
1

NT

)
= Op(1).

Similarly,

1

T
X ′

iX̄∆ =
1

T

∑[λ0
1T ]

t=[λ1T ]xitx̄
′
t =

1

T

∑[λ0
1T ]

t=[λ1T ] (Γ
′
ift + vit)

(
Γ̄′ft + v̄t

)′
=

1

T

∑[λ0
1T ]

t=[λ1T ]Γ
′
iftf

′
tΓ̄ +

1

T

∑[λ0
1T ]

t=[λ1T ]vitv̄
′
t

+
1

T

∑[λ0
1T ]

t=[λ1T ]Γ
′
iftv̄

′
t +

1

T

∑[λ0
1T ]

t=[λ1T ]vitf
′
tΓ̄.

1
T

∑[λ0
1T ]

t=[λ1T ] Γ
′
iftf

′
tΓ̄ = Op (1) is obvious. For the term 1

T

∑[λ0
1T ]

t=[λ1T ] vitv̄
′
t =

1
T
V ′
i∆V̄∆,

1

T
V ′
i∆V̄∆ =

1

TN
V ′
i∆Vi∆ +

1

T
V ′
i∆V̄−i,∆,
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where V̄−i,∆ = 1
N

∑N
j=1,i ̸=j Vj,∆. It’s obvious that V ′

i∆Vi∆ = Op (1) uniformly over i

and then 1
TN
V ′
i∆Vi∆ = Op

(
1

TN

)
. Since V ′

i∆ and V̄−i,∆ are independent under Assump-

tion 3 and for the lth row of V ′
i∆V̄−i,∆denoted by V ′

il∆V̄−i,∆

sup
i
V ar

(
1

T
V ′
il∆V̄−i,∆

)
= sup

i
V ar(

1

T

k01∑
t=k1

V ′
iltV̄−i,t)

= O(N−1) sup
i
E(

1

T 2

∑k01
t=k1

∑k01
t′=k1

ViltV
′
ilt′).

Under Assumption 9, supiE
(

1
T

∑k01
t=k1

∑k01
t′=k1

ViltV
′
ilt′

)
= O( 1

T 2 ). Thus,

sup
i
V ar

(
1√
T
V ′
il∆V̄−i,∆

)
= O

(
1

NT 2

)
and then 1

T
V ′
i∆V̄−i,∆ = Op

(
1

T
√
N

)
. We obtain

1

T
V ′
i∆V̄⋆ = Op

(
1

NT

)
+Op

(
1

T
√
N

)
= Op

(
1

T
√
N

)
,

1
T

∑[λ0
1T ]

t=[λ1T ] Γ
′
iftv̄

′
t = Op

(
1√
Y N

)
and 1

T

∑[λ0
1T ]

t=[λ1T ] vitf
′
tΓ̄ = Op

(
1√
T

)
. Thus, 1

T
X ′

iX̄∆ =

Op(1). Lastly, we obtain 1
T
Z ′

i∆Zi∆ = Op (1).

Similarly,

1

T 2
X ′

i⋆Xi⋆ =
1

T 2

∑[λ2T ]
t=[λ1T ]xitx

′
it =

1

T 2

∑[λ2T ]
t=[λ1T ] (Γ

′
ift + vit) (Γ

′
ift + vit)

′

=
1

T 2

∑[λ2T ]
t=[λ1T ]Γ

′
iftf

′
tΓi +

1

T 2

∑[λ2T ]
t=[λ1T ]vitv

′
it

+
1

T 2

∑[λ2T ]
t=[λ1T ]Γ

′
iftv

′
it +

1

T 2

∑[λ2T ]
t=[λ1T ]vitf

′
tΓi.

Under equation (54), 1
T 2

∑T
t=1 Γ

′
iftf

′
tΓi = Op (1). Under equation (55), 1

T 2

∑[λ2T ]
t=[λ1T ] vitv

′
it =

op(1).
1
T 2

∑[λ2T ]
t=[λ1T ] Γ

′
iftv

′
it = Op

(
1
T

)
and 1

T 2

∑[λ2T ]
t=[λ1T ] vitf

′
tΓi = Op

(
1
T

)
. Thus, 1

T 2X
′
i⋆Xi⋆ =

Op(1).
1
T 2 X̄

′
⋆X̄⋆ = Op(1) and 1

T 2X
′
i⋆X̄⋆ = Op(1) are shown similarly. Lastly,

1
T 2Z

′
i⋆Zi⋆ = Op (1).

(ii) Under Assumption 8(v) and Lemma 1(i), for large T , V ar (Z ′
i∆εi⋆) = Z ′

i∆Σε,iZi∆ =

O (T ). Thus, 1√
T
Z ′

i∆εi⋆ = Op (1).
1
T
Z ′

i⋆εi⋆ = Op (1) is shown similarly.

(iii) is proved as the arguments of (ii) and is omitted.

(iv)Under Assumption 9, we have E ∥v̄t∥2 = 1
N2

∑N
i=1E ∥vit∥2 = O

(
1
N

)
. Also,

E
∥∥ 1
T
V̄ ′
⋆V̄⋆

∥∥ ≤ 1
T

∑k2
t=k1

(
E ∥v̄t∥2

)
. Thus, E

∥∥ 1
T
V̄ ′
⋆V̄⋆

∥∥ = O
(

1
N

)
and then 1

T
V̄ ′
⋆V̄⋆ =

Op

(
1
N

)
. Similarly, E

∥∥ 1
T
V̄ ′
∆V̄∆

∥∥ = O
(

1
N

)
and then V̄ ′

∆V̄∆ = Op

(
1
N

)
.

Since Xi∆ = F∆Γi + Vi∆,

T−1/2X ′
i∆V̄⋆ = T−1/2Γ′

iF
′
∆V̄⋆ + T−1/2V ′

i∆V̄⋆.
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For the first term, T−1/2F ′
∆V̄⋆ = T−1/2

∑k01
t=k1

ftv̄
′
t. Consider the l

throw of matrix

T−1/2F ′
∆V̄⋆, under the Assumption 9 that vit are independent of common factor,

V ar(T−1/2

k01∑
t=k1

fltv̄t) = [T−1E(
∑k01

t=k1
fltflt)]E(

∑k01
t=k1

v̄tv̄
′
t).

Since E
(∑k01

t=k1
v̄tv̄

′
t

)
= O( 1

N
) and 1

T
F ′
∆F∆ = Op (1), V ar

(
T−1/2

∑k01
t=k1

fltv̄t

)
=

O( 1
N
). Thus, T−1/2F ′

∆V̄⋆ = Op

(
N−1/2

)
and then T−1/2Γ′

iF
′
∆V̄⋆ = Op

(
N−1/2

)
, under

Assumption 3 that Γi is bounded.

For the second term T−1/2V ′
i∆V̄⋆ = T−1/2V ′

i∆V̄∆,

T−1/2V ′
i∆V̄∆ = T−1/2N−1V ′

i∆Vi∆ + T−1/2V ′
i∆V̄−i,∆,

where V̄−i,∆ = 1
N

∑N
j=1,i ̸=j Vj,∆. It’s obvious that V ′

i∆Vi∆ = Op (1) uniformly over i

and then T−1/2N−1V ′
i∆Vi∆ = Op

(
T−1/2N−1

)
. Since V ′

i∆ and V̄−i,∆ are independent

under Assumption 3 and for the lth row of V ′
i∆V̄−i,∆denoted by V ′

il∆V̄−i,∆

supiV ar
(
T−1/2V ′

il∆V̄−i,∆

)
= supiV ar(T

−1/2
∑k01

t=k1
V ′
iltV̄−i,t)

= O
(
N−1

)
supiE(T

−1
∑k01

t=k1

∑k01
t′=k1

ViltV
′
ilt′).

Under Assumption 9, supiE
(

1
T

∑k01
t=k1

∑k01
t′=k1

ViltV
′
ilt′

)
= O( 1

T
). Thus,

sup
i
V ar

(
1√
T
V ′
il∆V̄−i,∆

)
= O

(
1

NT

)
and then 1√

T
V ′
i∆V̄−i,∆ = Op

(
1√
TN

)
. We obtain

1√
T
V ′
i∆V̄⋆ = Op

(
1√
TN

)
+Op

(
1√
TN

)
= Op

(
1√
TN

)
.

Lastly,

T−1/2X ′
i∆V̄⋆ = Op

(
N−1/2

)
+Op

(
T−1/2N−1/2

)
= Op

(
N−1/2

)
.

According to X̄∆ = F∆Γ̄ + V̄∆,

T−1/2X̄ ′
∆V̄⋆ = T−1/2Γ̄′F ′

∆V̄⋆ + T−1/2V̄ ′
∆V̄⋆.

Since T−1/2Γ̄′F ′
∆V̄⋆ = Op

(
N−1/2

)
and T−1/2V̄ ′

∆V̄⋆ = Op

(
T−1/2N−1

)
, thus, T−1/2X̄ ′

∆V̄⋆ =

Op

(
N−1/2

)
.

We lastly conclude T−1/2Z ′
i∆V̄⋆ = Op

(
N−1/2

)
.
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T−1Z ′
i⋆V̄⋆ = Op

(
N−1/2

)
can be shown as the proof of T−1/2Z ′

i∆V̄⋆ = Op

(
N−1/2

)
.

Lemma 2. Under Assumptions 1-8, uniformly on K (Ck),

(i)
∑N

i=1 (δi2 − δi1)
′ Z ′

i∆MZi⋆ε
∗
i⋆ = Op

(√
TϕN,1

)
;

(ii)
∑N

i=1 ε
∗′
i⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆ε
∗
i⋆ = Op (N);

(iii)
∑N

i=1 ε
∗′
i♢MZi♢Zi∆

(
Z ′

i∆MZi♢Zi∆

)−1
Z ′

i∆MZi♢ε
∗
i♢ = Op (N).

Proof of Lemma 2. (i) Since ε∗it = εit − v̄′tΓ̄
′(Γ̄Γ̄′)−1γi(k1), ε

∗
i⋆ = εi⋆ −

V̄⋆Γ̄
′(Γ̄Γ̄′)−1γ1i for the interval [k01 + 1, k2]. Plugging the expression of ε∗i⋆ into∑N

i=1 2(δi2 − δi1)
′Z ′

i∆MZi⋆ε
∗
i⋆ gives∑N

i=1(δi2 − δi1)
′Z ′

i∆MZi⋆ε
∗
i⋆

=
∑N

i=1(δi2 − δi1)
′Z ′

i∆εi⋆ −
∑N

i=1 (δi2 − δi1)
′ Z ′

i∆V̄⋆Γ̄
′(Γ̄Γ̄′)−1γ1i

+
∑N

i=1(δi2 − δi1)
′Z ′

i∆Zi⋆(Z
′
i⋆Zi⋆)

−1Z ′
i⋆εi⋆

−
∑N

i=1(δi2 − δi1)
′Z ′

i∆Zi⋆(Z
′
i⋆Zi⋆)

−1Z ′
i⋆V̄⋆Γ̄

′(Γ̄Γ̄′)−1γ1i.

For the first term,

V ar[
∑N

i=1(δi2 − δi1)
′Z ′

i∆εi⋆] =
∑N

i=1(δi2 − δi1)
′Z ′

i∆Σε,iZi∆ (δi2 − δi1)

= O (TϕN,1) ,

Thus,
∑N

i=1(δi2 − δi1)
′Z ′

i∆εi⋆ = Op

(√
TϕN,1

)
. By Lemma 1(i) and Assumption 8,

1
T
Z ′

i∆Σε,iZi∆ = Op(1). The second equality above is due to the fact that 1
T

∑N
i=1(δi2−

δi1)
′Z ′

i∆Σε,iZi∆(δi2−δi1) is of the same order of magnitude as
∑N

i=1(δi2−δi1)′(δi2−δi1).
Consider the second term. Since Γ̄′(Γ̄Γ̄′)−1γi is bounded under Assumption 3,∑N

i=1(δi2−δi1)′Z ′
i∆V̄⋆Γ̄

′(Γ̄Γ̄′)−1γi is of the same order of magnitude as
∑N

i=1(δi2−
δi1)

′Z ′
i∆V̄⋆. By Lemma 1(iv),

V ar

[
N∑
i=1

(δi2 − δi1)
′Z ′

i∆V̄⋆

]
=

N∑
i=1

(δi2 − δi1)
′Z ′

i∆V ar
(
V̄⋆
)
Zi∆ (δi2 − δi1)

= O

(
T

N

)
O (ϕN,1) = O

(
T

N
ϕN,1

)
.

Thus,
∑N

i=1 (δi2 − δi1)
′ Z ′

i∆V̄⋆Γ̄
′(Γ̄Γ̄′)−1γi = Op

(√
T
N
ϕN,1

)
. By Lemma 1(i) and (iv)

,N
T
Z ′

i∆V ar
(
V̄⋆
)
Zi∆ = Op(1). Thus

∑N
i=1 (δi2 − δi1)

′ Z ′
i∆V ar

(
V̄⋆
)
Zi∆ (δi2 − δi1) is of

the same order of magnitude of O(TN−1)
∑N

i=1(δi2− δi1)
′(δi2− δi1) = O (TN−1ϕN,1).

For the third term, by Lemma 1(i) and (ii),

V ar
(∑N

i=1 (δi2 − δi1)
′ (T−1Z ′

i∆Zi⋆)
(
T−1Z ′

i⋆Zi⋆

)−1
(T−1Z ′

i⋆εi⋆)
)
= O (ϕN,1) ,
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Thus,
N∑
i=1

(δi2 − δi1)
′ Z

′
i∆Zi⋆

T

(
Z ′

i⋆Zi⋆

T 2

)−1 Z ′
i⋆εi⋆

T
= Op

(√
ϕN,1

)
.

For the fourth term, by Lemma 1(i) and (iv),

V ar
(∑N

i=1 (δi2 − δi1)
′ (T−1Z ′

i∆Zi⋆)
(
T−1Z ′

i⋆Zi⋆

)−1
(T−1Z ′

i⋆V̄⋆)Γ̄
′(Γ̄Γ̄′)−1γ1i

)
=O (1)O (ϕN,1)O

(
1

N

)
= O

(
ϕN,1

N

)
,

Thus,
∑N

i=1 (δi2 − δi1)
′ Z ′

i∆Zi⋆

(
Z ′

i⋆Zi⋆

)−1
Z ′

i⋆V̄⋆Γ̄
′ (Γ̄Γ̄′)−1

γ1i = Op

(√
ϕN,1

N

)
.

Lastly,
∑N

i=1 (δi2 − δi1)
′ Z ′

i∆MZi⋆ε
∗
i⋆ = Op

(√
TϕN,1

)
.

(ii) Since ε∗it = εit − v̄′tΓ̄
′(Γ̄Γ̄′)−1γ1i in interval [k01 + 1, k2],

ε∗′i⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆ε
∗
i⋆

= ε′i⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆εi⋆

−ε′i⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆V̄⋆Γ̄
′ (Γ̄Γ̄′)−1

γ1i

−γ′1i
(
Γ̄Γ̄′)−1

Γ̄V̄ ′
⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆εi⋆

+γ′1i
(
Γ̄Γ̄′)−1

Γ̄V̄ ′
⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆V̄⋆Γ̄
′ (Γ̄Γ̄′)−1

γ1i.

For the first term, by Lemma 1(i) and (ii),

1

T
Z ′

i∆MZi⋆εi⋆ =
1

T
Z ′

i∆εi⋆ − 1

T
(T−1Z ′

i∆Zi⋆)
(
T−1Z ′

i⋆Zi⋆

)−1
(T−1Z ′

i⋆εi⋆)

=
1

T
Z ′

i∆εi⋆ +Op

(
1

T

)
,

Thus, 1
T
Z ′

i∆MZi⋆εi⋆ is of same order of magnitude as 1
T
Z ′

i∆εi⋆, as T → ∞. Similarly,

1
T
Z ′

i∆MZi⋆Zi∆ is of same order of magnitude as 1
T
Z ′

i∆Zi∆, under Lemma 1(i) as

(N, T ) → ∞. In addition, since MZi⋆Zi∆

(
1
T
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆ is positive

semidefinite,

ε′i⋆MZi⋆Zi∆(T
−1Z ′

i∆MZi⋆Zi∆)
−1Z ′

i∆MZi⋆εi⋆ ≥ 0. In addition, |k1−k01| is bounded
on K(Ck),

1

N

N∑
i=1

(T−1/2ε′i⋆MZi⋆Zi∆)(T
−1Z ′

i∆MZi⋆Zi∆)
−1(T−1/2Z ′

i∆MZi⋆εi⋆) = Op (1) .

The above equation is due to the fact that since both 1√
T
Z ′

i∆MZi⋆εi⋆ and 1
T
Z ′

i∆MZi⋆Zi∆

is of order Op (1), the order of above term is same as the order of 1
N

∑N
i=1Op (1) =

Op (1).
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Thus, by Lemma 1(i) and (ii),∑N
i=1(T

−1/2ε′i⋆MZi⋆Zi∆)(T
−1Z ′

i∆MZi⋆Zi∆)
−1(T−1/2Z ′

i∆MZi⋆εi⋆) = Op (N) .

For the second term, by Lemma 1(i), (ii) and (iv),∑N
i=1(T

−1/2ε′i⋆MZi⋆Zi∆)(T
−1Z ′

i∆MZi⋆Zi∆)
−1(T−1/2Z ′

i∆MZi⋆εi⋆)Γ̄
′(Γ̄Γ̄′)−1γ1i

=Op (1)OP

(
N−1/2

)
Op

(√
N
)
= Op (1) .

The first equality above is due to the fact that the term Γ̄′(Γ̄Γ̄′)−1γi is bounded under

Assumption 1 and under the Lemma 1(i), (ii) and (iv), the order of the second term

is same as sum of finite elements on K(Ck), also according to the proof of Lemma

7(iv) in BFK(2016) and thus
∑N

i=1 T
−1/2ε′i⋆MZi⋆Zi∆ = Op

(√
N
)
.

For the third term, by Lemma 1(i), (iii) and (iv),

N∑
i=1

γ′1i(Γ̄Γ̄
′)−1Γ̄V̄ ′

⋆MZi⋆Zi∆(Z
′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆εi⋆ = Op (1) ,

which is showed similarly as the second term above.

For the fourth term, by Lemma 1(i) and (iv),

N∑
i=1

γ′1i(Γ̄Γ̄
′)−1Γ̄(T−1/2Z ′

i∆MZi⋆V̄⋆)(Z
′
i∆MZi⋆Zi∆T

−1)−1(T−1/2Z ′
i∆MZi⋆V̄⋆)Γ̄

′(Γ̄Γ̄′)−1γ1i

= Op (1)OP

(
N−1/2

)
OP

(
N−1/2

)
Op(N) = Op (1) .

Combining these four terms together, we obtain∑N
i=1ε

∗′
i⋆MZi⋆Zi∆(Z

′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆ε

∗
i⋆ = Op(N).

(iii) can be proved in the same way as (ii) by Lemma 1.

Lemma 3. Under Assumptions 1-10 and 12, uniformly on K(Ck) and for i =

1, ..., N , as (N, T ) → ∞,

(i) 1
T
Z ′

i∆Zi∆ = Op (1),
1
T 2Z

′
i⋆Zi⋆ = Op (1);

(ii) T−1/2Z ′
i∆εi⋆ = T−1/2Z ′

i∆εi∆ = Op (1), T
−1Z ′

i⋆εi⋆ = Op (1);

(iii) T−1/2Z ′
i∆εi♢ = T−1/2Z ′

i∆εi∆ = Op (1), T
−1Z ′

i♢εi♢ = Op (1);

(iv)T−2V̄ ′
⋆V̄⋆ = Op (N

−1), T−1Z ′
i∆V̄⋆ = Op

(
N−1/2

)
, T−3/2Z ′

i⋆V̄⋆ = Op

(
N−1/2

)
.

Proof of Lemma 3. (i) According to Lemma 1(b) in the supplementary ap-

pendix of Baltagi, Kao and Liu (2017), for any 0 ≤ τ1 < τ2 ≤ 1 and under Assump-

tion 12,
1

T 2

∑[τ2T ]
t=[τ1T ]vitv

′
it = Op (τ2 − τ1) . (56)
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Plugging xit = Γ′
ift + vit into Xi∆ gives

1

T
X ′

i∆Xi∆ =
1

T

∑[λ0
1T ]

t=[λ1T ]xitx
′
it =

1

T

∑[λ0
1T ]

t=[λ1T ] (Γ
′
ift + vit) (Γ

′
ift + vit)

′

=
1

T

∑[λ0
1T ]

t=[λ1T ]Γ
′
iftf

′
tΓi +

1

T

∑[λ0
1T ]

t=[λ1T ]vitv
′
it

+
1

T

∑[λ0
1T ]

t=[λ1T ]Γ
′
iftv

′
it +

1

T

∑[λ0
1T ]

t=[λ1T ]vitf
′
tΓi.

Same as Lemma 1(i) , 1
T

∑[λ0
1T ]

t=[λ1T ] Γ
′
iftf

′
tΓi = Op(1). From equation (56) and |λ1 − λ01| =

Op

(
1
T

)
, 1

T

∑[λ0
1T ]

t=[λ1T ] vitv
′
it = Op (1) . According to Lemma 2(d) in the supplementary

appendix of Baltagi, Kao and Liu (2017), for any 0 ≤ τ1 < τ2 ≤ 1 and under

Assumption 6 and 12, uniformly over i,

1

T 2

∑[τ2T ]
t=[τ1T ]ftvit = Op (τ2 − τ1) , (57)

From equation (57) and |λ1 − λ01| = Op

(
1
T

)
, 1
T

∑[λ0
1T ]

t=[λ1T ] Γ
′
iftv

′
it = Op (1) and

1
T

∑[λ0
1T ]

t=[λ1T ] vitf
′
tΓi =

Op (1). Thus,
1

T
X ′

i∆Xi∆ = Op(1) +Op (1) = Op (1) .

Plugging x̄t = Γ̄′ft + v̄t into X̄∆ gives

1

T
X̄ ′

∆X̄∆ =
1

T

∑[λ0
1T ]

t=[λ1T ]x̄tx̄
′
t =

1

T

∑[λ0
1T ]

t=[λ1T ](Γ̄
′ft + v̄t)(Γ̄

′ft + v̄t)
′

= Γ̄′(
1

T

∑[λ0
1T ]

t=[λ1T ]ftf
′
t)Γ̄ +

1

T

∑[λ0
1T ]

t=[λ1T ]v̄tv̄
′
t.

Same as Lemma 1(i) , Γ̄′( 1
T

∑[λ0
1T ]

t=[λ1T ]ftf
′
t)Γ̄ = Op(1). Under Assumption 12, we have

1
T

∑[λ0
1T ]

t=[λ1T ] v̄tv̄
′
t = Op

(
1
N

)
. Thus, 1

T
X̄ ′

∆X̄∆ = Op(1) +Op

(
1
N

)
= Op(1).

Similarly,

1

T
X ′

iX̄∆ =
1

T

∑[λ0
1T ]

t=[λ1T ]xitx̄
′
t =

1

T

∑[λ0
1T ]

t=[λ1T ] (Γ
′
ift + vit) (Γ̄

′ft + v̄t)
′

=
1

T

∑[λ0
1T ]

t=[λ1T ]Γ
′
iftf

′
tΓ̄ +

1

T

∑[λ0
1T ]

t=[λ1T ]vitv̄
′
t

+
1

T

∑[λ0
1T ]

t=[λ1T ]Γ
′
iftv̄

′
t +

1

T

∑[λ0
1T ]

t=[λ1T ]vitf
′
tΓ̄.

1
T

∑[λ0
1T ]

t=[λ1T ] Γ
′
iftf

′
tΓ̄ = Op (1) is obvious. For the term 1

T

∑[λ0
1T ]

t=[λ1T ] vitv̄
′
t =

1
T
V ′
i∆V̄∆,

1

T
V ′
i∆V̄∆ =

1

TN
V ′
i∆Vi∆ +

1

T
V ′
i∆V̄−i,∆,

where V̄−i,∆ = 1
N

∑N
j=1,i ̸=j Vj,∆. It’s obvious that uniformly over i, 1

TN
V ′
i∆Vi∆ =

Op

(
1
N

)
. Since V ′

i∆ and V̄−i,∆ are independent under Assumption 3 and for the lth
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row of V ′
i∆V̄−i,∆denoted by V ′

il∆V̄−i,∆

supiV ar(
1

T
V ′
il∆V̄−i,∆) = supiV ar(

1

T

k01∑
t=k1

V ′
iltV̄−i,t)

= E(
1

T

k01∑
t=k1

k01∑
t′=k1

V̄−i,tV̄
′
−i,t′)supiE(

1

T

k01∑
t=k1

ViltV
′
ilt).

Under Assumption 12, E( 1
T

∑k01
t=k1

V̄−i,tV̄
′
−i,t) = O(N−1) and supiE(

1
T

∑k01
t=k1

ViltV
′
ilt) =

O(1). Thus, supi V ar(
1
T
V ′
il∆V̄−i,∆) = O (N−1) and then 1

T
V ′
i∆V̄−i,∆ = Op

(
N−1/2

)
.

We obtain 1
T
V ′
i∆V̄⋆ = Op (N

−1) + Op

(
N−1/2

)
= Op

(
N−1/2

)
. 1

T

∑[λ0
1T ]

t=[λ1T ] Γ
′
iftv̄

′
t =

Op

(
N−1/2

)
is proved similarly. Since 1

T

∑[λ0
1T ]

t=[λ1T ] vitf
′
tΓ̄ = Op (1), thus,

1
T
X ′

iX̄∆ =

Op(1) +Op

(
N−1/2

)
= Op(1). Lastly, we obtain 1

T
Z ′

i∆Zi∆ = Op (1).

Similarly,

1

T 2
X ′

i⋆Xi⋆ =
1

T 2

∑[λ2T ]
t=[λ1T ]xitx

′
it =

1

T 2

∑[λ2T ]
t=[λ1T ] (Γ

′
ift + vit) (Γ

′
ift + vit)

′

=
1

T 2

∑[λ2T ]
t=[λ1T ]Γ

′
iftf

′
tΓi +

1

T 2

∑[λ2T ]
t=[λ1T ]vitv

′
it

+
1

T 2

∑[λ2T ]
t=[λ1T ]Γ

′
iftv

′
it +

1

T 2

∑[λ2T ]
t=[λ1T ]vitf

′
tΓi.

Under equation (56), 1
T 2

∑[λ2T ]
t=[λ1T ] vitv

′
it = op(1). Thus,

1
T 2X

′
i⋆Xi⋆ = Op(1).

1
T 2 X̄

′
⋆X̄⋆ =

Op(1) and
1
T 2 X̄

′
⋆Xi⋆ = Op(1) are shown similarly. Lastly, 1

T 2Z
′
i⋆Zi⋆ = Op (1).

(ii) According to Lemma 2(d) in the supplementary appendix of Baltagi, Kao

and Liu(2017), for any 0 ≤ τ1 < τ2 ≤ 1 and under Assumptions 6,

T−2
∑[τ2T ]

t=[τ1T ]ftεit = Op (τ2 − τ1) , (58)

uniformly over i. Since |λ1 − λ01| = Op (T
−1), T−2F ′

∆εi∆ = T−2
∑k01

t=k1
ftεit = Op (T

−1)

and then T−1F ′
∆εi∆ = Op(1). Similarly, T−1V ′

i∆εi∆ = Op (1). Thus,

T−1X ′
i∆εi⋆ = T−1Γ′

iF
′
∆εi∆ + T−1V ′

i∆εi∆ = Op (1) ,

under the Assumption 3 that Γi is bounded.

Plugging x̄t = Γ̄′ft + v̄t gives

T−1X̄ ′
∆εi⋆ = T−1Γ̄′F ′

∆εi∆ + T−1V̄ ′
∆εi∆.

Under the Assumption 3 that Γ̄ is bounded, T−1Γ̄′F ′
∆εi∆ = Op(1). T−1V̄ ′

∆εi∆ =

Op

(
N−1/2

)
and then T−1X̄ ′

∆εi⋆ = Op(1) +Op

(
N−1/2

)
= Op(1).
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Lastly, we obtain T−1Z ′
i∆εi⋆ = Op (1). T

−2Z ′
i⋆εi⋆ = Op (1) is shown similarly

and omitted.

(iii) is proved as the arguments of (ii).

(iv) Since

T−2V̄ ′
⋆V̄⋆ = T−2

∑k2
t=k1

(v̄tv̄
′
t) = T−2

∑k2
t=k1

(
1

N

∑N
i=1vit)(

1

N

∑N
i=1vit)

′.

under Assumption 12,

T−2E(V̄ ′
⋆V̄⋆) = T−2E(

∑k2
t=k1

(N−1
∑N

i=1vit)(
1

N

∑N
i=1vit)

′)

≤ supiN
−1T−2E[

∑k2
t=k1

vitv
′
it] = O

(
N−1

)
.

Thus, 1
T 2 V̄

′
⋆V̄⋆ = Op

(
1
N

)
. 1

T
V̄ ′
∆V̄∆ = Op

(
1
N

)
is proved similarly and omitted.

Since Xi∆ = F∆Γi + Vi∆,

1

T
X ′

i∆V̄⋆ =
1

T
Γ′
iF

′
∆V̄⋆ +

1

T
V ′
i∆V̄⋆.

For the first term, 1
T
F ′
∆V̄⋆ = 1

T

∑k01
t=k1

ftv̄
′
t. Consider the l

throw of matrix 1
T
F ′
∆V̄⋆,

under the Assumption 12 that vit are independent of common factor,

V ar(T−1
∑k01

t=k1
fltv̄t) = E(T−1

∑k01
t=k1

fltflt)E(T
−1
∑k01

t=k1
v̄tv̄

′
t).

Since E( 1
T

∑k01
t=k1

v̄tv̄
′
t) = O( 1

N
) and 1

T
F ′
∆F∆ = Op (1), V ar(

1
T

∑k01
t=k1

fltv̄t) = O(N−1).

Thus, 1
T
F ′
∆V̄⋆ = Op

(
N−1/2

)
and then 1

T
Γ′
iF

′
∆V̄⋆ = Op

(
N−1/2

)
, under Assumption 3

that Γi is bounded.

For the second term T−1/2V ′
i∆V̄⋆ = T−1/2V ′

i∆V̄∆,

1

T
V ′
i∆V̄∆ =

1

TN
V ′
i∆Vi∆ +

1

T
V ′
i∆V̄−i,∆,

where V̄−i,∆ = 1
N

∑N
j=1,i ̸=j Vj,∆. It’s obvious that

1
T
V ′
i∆Vi∆ = Op (1) uniformly over i

and then 1
TN
V ′
i∆Vi∆ = Op

(
1
N

)
. Since V ′

i∆ and V̄−i,∆ are independent under Assump-

tion 3 and for the lth row of V ′
i∆V̄−i,∆denoted by V ′

il∆V̄−i,∆

supi||V ar(T−1V ′
il∆V̄−i,∆)|| = supi||V ar(T−1

∑k01
t=k1

V ′
iltV̄−i,t)||

≤E(||T−1
∑k01

t=k1
v̄tv̄

′
t||)supiE(||T−1

∑k01
t=k1

ViltV
′
ilt||).

Under Assumption 9, supiE(||T−1
∑k01

t=k1
ViltV

′
ilt||) = O(1) and E(||T−1

∑k01
t=k1

v̄tv̄
′
t||) =

O (N−1). Thus, supi V ar
(
1
T
V ′
il∆V̄−i,∆

)
= O (N−1) and then 1

T
V ′
i∆V̄−i,∆ = Op

(
N−1/2

)
.

We obtain
1

T
V ′
i∆V̄⋆ = Op

(
N−1

)
+Op

(
N−1/2

)
= Op

(
N−1/2

)
.
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Lastly, 1
T
X ′

i∆V̄⋆ = Op

(
N−1/2

)
.

According to X̄∆ = F∆Γ̄ + V̄∆,

1

T
X̄ ′

∆V̄⋆ =
1

T
Γ̄′F ′

∆V̄⋆ +
1

T
V̄ ′
∆V̄⋆.

Since 1
T
Γ̄′F ′

∆V̄⋆ = Op

(
N−1/2

)
and 1

T
V̄ ′
∆V̄⋆ = Op (N

−1), thus, 1
T
X̄ ′

∆V̄⋆ = Op

(
N−1/2

)
.

We lastly conclude 1
T
Z ′

i∆V̄⋆ = Op

(
N−1/2

)
. 1

T 2Z
′
i⋆V̄⋆ = Op

(
N−1/2

)
is proved

similarly.

Lemma 4. Under Assumptions 1-10 and 12, uniformly on K (Ck),

(i)
∑N

i=1 (δi2 − δi1)
′ Z ′

i∆MZi⋆ε
∗
i⋆ = Op

(√
TϕN,1

)
+Op

(
T
√

ϕN,1

N

)
;

(ii)
∑N

i=1 ε
∗′
i⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆ε
∗
i⋆ = Op (N) +Op (T );

(iii)
∑N

i=1 ε
∗′
i♢MZi♢Zi∆

(
Z ′

i∆MZi♢Zi∆

)−1
Z ′

i∆MZi♢ε
∗
i♢ = Op (N) +Op (T ).

Proof of Lemma 4. (i) since ε∗it = εit − v̄′tΓ̄
′(Γ̄Γ̄′)−1γi(k1) ,ε∗i⋆ = εi⋆ −

V̄⋆Γ̄
′(Γ̄Γ̄′)−1γ1i for the interval [k01 + 1, k2]. Plugging the expression of ε∗i⋆ into∑N

i=1(δi2 − δi1)
′Z ′

i∆MZi⋆ε
∗
i⋆ gives∑N

i=1(δi2 − δi1)
′Z ′

i∆MZi⋆ε
∗
i⋆

=
∑N

i=1(δi2 − δi1)
′Z ′

i∆εi⋆

−
∑N

i=1(δi2 − δi1)
′Z ′

i∆V̄⋆Γ̄
′(Γ̄Γ̄′)−1γ1i

+
∑N

i=1(δi2 − δi1)
′Z ′

i∆Zi⋆(Z
′
i⋆Zi⋆)

−1Z ′
i⋆εi⋆

−
∑N

i=1(δi2 − δi1)
′Z ′

i∆Zi⋆(Z
′
i⋆Zi⋆)

−1Z ′
i⋆V̄⋆Γ̄

′(Γ̄Γ̄′)−1γ1i.

For the first term, by Lemma 3(ii) Assumption 4,∑N
i=1(δi2 − δi1)

′Z ′
i∆εi⋆ = Op

(√
ϕN,1

)
Op

(√
T
)
= Op

(√
TϕN,1

)
.

For the second term, by Lemma 3(iv) and Assumptions 3 and 4,∑N
i=1(δi2 − δi1)

′Z ′
i∆V̄⋆Γ̄

′(Γ̄Γ̄′)−1γ1i = Op

(√
ϕN,1

)
Op

(
TN−1/2

)
= Op

(
Tϕ

1/2
N,1N

−1/2
)
.

For the third term, by Lemma 3(i) (ii) and Assumption 4,

T
∑N

i=1(δi2 − δi1)
′(T−1Z ′

i∆Zi⋆)(T
−2Z ′

i⋆Zi⋆)
−1(T−1Z ′

i⋆εi⋆) = Op

(√
ϕN,1

)
.

For the fourth term, by Lemma 3(i) (iv) and Assumptions 3 and 4,

√
T
∑N

i=1 (δi2 − δi1)
′ (T−1Z ′

i∆Zi⋆)(T
−2Z ′

i⋆Zi⋆)
−1(T−3/2Z ′

i⋆V̄⋆)Γ̄
′(Γ̄Γ̄′)−1γ1i

=T 1/2Op

(
ϕ
1/2
N,1

)
Op

(
N−1/2

)
= Op

(
T 1/2ϕ

1/2
N,1N

−1/2
)
.
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Thus,

N∑
i=1

(δi2 − δi1)
′ Z ′

i∆MZi⋆ε
∗
i⋆ = Op

(√
TϕN,1

)
+Op

(
Tϕ

1/2
N,1N

−1/2
)

+Op

(√
ϕN,1

)
+Op

(
T 1/2ϕ

1/2
N,1N

−1/2
)

= Op

(
T 1/2ϕ

1/2
N,1

)
+Op(Tϕ

1/2
N,1N

−1/2).

(ii) Since ε∗it = εit − v̄′tΓ̄
′(Γ̄Γ̄′)−1γ1i in interval [k01 + 1, k2],

ε∗′i⋆MZi⋆Zi∆(Z
′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆ε

∗
i⋆

=ε′i⋆MZi⋆Zi∆(Z
′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆εi⋆

−ε′i⋆MZi⋆Zi∆(Z
′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆V̄⋆Γ̄

′(Γ̄Γ̄′)−1γ1i

−γ′1i(Γ̄Γ̄′)−1Γ̄V̄ ′
⋆MZi⋆Zi∆(Z

′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆εi⋆

+γ′1i(Γ̄Γ̄
′)−1Γ̄V̄ ′

⋆MZi⋆Zi∆(Z
′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆V̄⋆Γ̄

′(Γ̄Γ̄′)−1γ1i.

Since MZi⋆Zi∆(T
−1Z ′

i∆MZi⋆Zi∆)
−1Z ′

i∆MZi⋆ is positive semidefinite,

ε′i⋆MZi⋆Zi∆(Z
′
i∆MZi⋆Zi∆)

−1Z ′
i∆MZi⋆εi⋆ ≥ 0.

In addition, |k1 − k01| is bounded on K (Ck), by Lemma 3(i) (ii),

1

N

∑N
i=1(T

−1/2ε′i⋆MZi⋆Zi∆)(T
−1Z ′

i∆MZi⋆Zi∆)
−1(T−1/2Z ′

i∆MZi⋆εi⋆) = Op (1) .

Thus, for the first term,

∑N
i=1(T

−1/2ε′i⋆MZi⋆Zi∆)(T
−1Z ′

i∆MZi⋆Zi∆)
−1(T−1/2Z ′

i∆MZi⋆εi⋆) = Op (N) .

For the second term, by Lemma 3(i)(ii)(iv) and Assumption 3,

√
T
∑N

i=1(T
−1/2ε′i⋆MZi⋆Zi∆)T

−1Z ′
i∆MZi⋆Zi∆)(T

−1Z ′
i∆MZi⋆V̄⋆)Γ̄

′(Γ̄Γ̄′)−1γ1i

=
√
TOp (1)Op (1)OP

(
N−1/2

)
Op

(√
N
)
= Op

(√
T
)
.

For the third term, by Lemma 3(i)(ii)(iv) and Assumption 3,

√
T
∑N

i=1γ
′
1i(Γ̄Γ̄

′)−1Γ̄(V̄ ′
⋆MZi⋆Zi∆T

−1)

× (T−1Z ′
i∆MZi⋆Zi∆)

−1(T−1/2Z ′
i∆MZi⋆εi⋆)

= Op

(√
T
)
OP

(
N−1/2

)
Op (1)Op (1)Op

(√
N
)
= Op

(√
T
)
.
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For the fourth term, by Lemma 3(i)(iv) and Assumption 3,

T
∑N

i=1γ
′
1i(Γ̄Γ̄

′)−1Γ̄(T−1V̄ ′
⋆MZi⋆Zi∆)(T

−1Z ′
i∆MZi⋆Zi∆)

−1

× (T−1Z ′
i∆MZi⋆V̄⋆)Γ̄

′(Γ̄Γ̄′)−1γ1i

=TOp (N)OP

(
N−1/2

)
Op (1)OP

(
N−1/2

)
= Op (T ) .

Thus,

N∑
i=1

ε∗′i⋆MZi⋆Zi∆

(
Z ′

i∆MZi⋆Zi∆

)−1
Z ′

i∆MZi⋆ε
∗
i⋆ = Op(N)+Op

(√
T
)
+Op

(√
T
)
+Op (T )

(iii) can be proved in the same way as (ii).

Lemma 5. Under Assumptions 1-5, 7, 8, and uniformly over K (Ck) and for

each i = 1, ..., N , as (N, T ) → ∞,

(i) || 1
T
V̄ ′(k01, k

0
2)MX(k01 ,k

0
2)
V̄ (k01, k

0
2)|| = Op(N

−1), || 1
T
V ′

i(k
0
1, k

0
2)MX(k01 ,k

0
2)
V i(k

0
1, k

0
2)|| =

Op(1)

(ii)|| 1
T
F(k01, k02)′MX(k01 ,k

0
2)
F(k01, k02)|| = Op (N

−1), || 1
T
V ′

i(k
0
1, k

0
2)MX(k01 ,k

0
2)
F(k01, k02)|| =

Op(N
−1/2);

(iii)(iii) || 1
T
V̄ (k01, k

0
2)

′εi|| = Op(
1
N
) +Op(

1√
NT

), || 1
T
V̄ (k01, k

0
2)

′F0(k01, k
0
2)|| = 1√

N
;

(iv) || 1
T
F0′(k01, k

0
2)εi|| = Op(1).

Proof of Lemma 5. (i) Since MX(k01 ,k
0
2)
=MF̂0(k01 ,k

0
2)
,

1

T
V̄ ′(k01, k

0
2)MX(k01 ,k

0
2)
V̄ (k01, k

0
2) =

1

T
V̄ ′(k01, k

0
2)MF̂0(k01 ,k

0
2)
V̄ (k01, k

0
2)

=
1

T
V̄ ′(k01, k

0
2)MF0(k01 ,k

0
2)
V̄ (k01, k

0
2)

+
1

T
V̄ ′(k01, k

0
2)
[
MF̂0(k01 ,k

0
2)
−MF0(k01 ,k

0
2)

]
V̄ (k01, k

0
2).

We first analysis the first term,

|| 1
T
V̄ ′(k01, k

0
2)MF0(k01 ,k

0
2)
V̄ (k01, k

0
2)||

≤|| 1
T
V̄ ′(k01, k

0
2)V̄ (k01, k

0
2)||

+|| 1
T 2
V̄ ′(k01, k

0
2)F0(k01, k

0
2)

[
1

T 2
F0(k01, k

0
2)

′F0(k01, k
0
2)

]+
1

T
F0(k01, k

0
2)

′V̄ (k01, k
0
2)||

= Op(
1

N
) +Op(

1

T
)Op(

1

N
) = Op(

1

N
).

Next, for the second term, we can follow the P.12 and equation (S32) of the Appendix
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in Karabiyik et al.(2017) to show that

|| 1
T
V̄ ′(k01, k

0
2)
[
MF̂0(k01 ,k

0
2)
−MF0(k01 ,k

0
2)

]
V̄ (k01, k

0
2)|| = || 1

T
V̄ ′(k01, k

0
2)PV̄ 0

−(m1+1)q
V̄ (k01, k

0
2||

= OP (
1

N
) +Op(N

−3/2) +Op(
1√
TN

)

= OP (
1

N
).

Thus, we obtain (i) and (ii) can be proved similarly. (iii) and (iv) are obvious

and then omitted.
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