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Abstract

The common correlated effects (CCE) is one of the most popular estimating
approaches for the panel data model with the interactive fixed effects. However,
one of the restrictions of CCE is that the rank condition affects the asymptotic
properties of the pooled CCE estimator. In this paper, we proposed the two-steps
estimation, combining the orthogonal projection and CCE, to avoiding the rank
condition. The asymptotic properties of the proposed estimators are proved and
show in the experiments.
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1 Introduction

Panel data models with the interactive fixed effects have become popular in the econo-

metric model (Sarafidis and Wansbeek, 2012; Hsiao, 2018) and economic applications,

such as the international trade (Serlenga and Shin, 2007), finance (Gagliardini et al.,

2020), environments (Khan et al., 2020). To estimate the slopes, Pesaran (2006) pro-

posed the CCE estimators. This estimation is easy to implement, which has been

extended into the endogenous model (Harding and Lamarche, 2011), dynamic model

(Chudik and Pesaran, 2015) and others. The CCE used the cross-sectional average of

observed data to estimating the unobserved common factors, leading to the discusses
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of the rank condition in the pooled CCE estimator (Karabiyik et al., 2017; Karabiyik

et al., 2019; Juodis et al., 2021). Karabiyik et al. (2017) show that, while the number

of factors is strictly less than the number of observed data, the pooled CCE estimator

is biased, also show in Westerlund and Urbain (2015).

In this paper, we aim to apply the orthogonal projection of the CCE to avoid the

rank condition, inspired by the transformed estimation of Hsiao et al. (2022). Specifi-

cally, we find the null space of the observable data and then use the pooled regression

to estimate the interested parameters. Under the CCE, the two-steps estimation by the

orthogonal projection do not need iteration, as the transformation estimation of Hsiao

et al. (2022). The rest of this paper is organized as follows. Section 2 introduce the

model and the proposed estimation are presented. Section 3 conducts the Monte Carlo

experiments and Section 4 conclude this paper.

2 Model

For each individual i ∈ {1, · · · , N}, Yi = (yi1, · · · , yiT )′ denotes individual i’s dependent
variable with the time span t = {1, · · · , T}, and Xi = (xi1, · · · , xiT )

′ is the individual

i’s covariates with xit = (xit,1, · · · , xit,k)
′. The panel data model with the interactive

fixed effect or factor structure is

Yi = Xiβ + Fλi + εi, (1)

where β is k×1 vector of slopes, F = (f1, · · · , fT ) is an T×m dimensional unobservable

common factors with factor loadings λi, and εi = (εi1, · · · , εiT )′ is the individual i’s

idiosyncratic error.

In the setup of Pesaran (2006)’s CCE, the regressors are also driven by the common

factors,

Xi = FΛi + Vi, (2)

where Λi is m× k dimensional factor loadings of common factors F, Vi = (vit, · · · , viT )′

is the idiosyncratic error of the equation (2).

Let Zi = (Yi, Xi) denotes all the observable variables, and combining the equations

(1) and (2) gives

Zi = FCi + Ui, (3)

where Ci = (Λ′
iβ + λi,Λ

′
i) and Ui = (Viβ + εi, Vi). Equation (3) is always called the

common correlated effects, showing that the observable data are both correlated by the
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common factor F. The following Assumption are general in the CCE’s setup (Juodis et

al., 2021).

Assumption 1 (i) The disturbances eit = (εit, v
′
it)

′ is a stationary process that is in-

dependent across i with Γe,i(h) = E(eite
′
i,t−h) absolutely summable, E(eit) = 0(k+1)×1,

E||eit|| < ∞. (ii) For each series i, vit is independent of φt′ for all t and t′; (iii)

vit are linear stationary processes with zero mean and absolute summable autocovari-

ances, vit =
∑∞

l=0 Ξilυi,t−l, where (ζit, υ
′
it )′ are (p + 1) × 1 vectors of IID random

variables with variance-covariance matrix Ip+1 and has a finite fourth-order moments,

and V ar(vit) =
∑∞

l=0 ΞilΞ
′
il = Σv,i, and 0 < ∥Σv,i∥ < ∞.

Assumption 2 (i) Factor loadings Ci is independent across i, with E||Ci||2 < ∞, and

E(Ci) = C; (ii) Ci and uj are independent for all i and j; (iii) E||λi||4 < ∞, and

plimN→∞
1
N

∑N
i=1 λiλ

′
i = Σλ, with positive definite matrix Σλ.

Assumption 3 (i) ft is a stationary process with E(ft) = 0m×1,Γf (h) = limT→∞
1
T
ftf

′
t−h,

and Σf = Γf (0) is a positive definite matrix, and Γf (h) absolutely summable; (ii) eit

and fs are mutually independent for all i, t and s.

According to equation (3), the common factors are estimated by the cross-sectional

average of observable variables, F̂ = Z̄ = 1
N

∑N
i=1 Zi = FC + Ū , as N → ∞. Thus, the

pooled CCE estimator (CCEP) of Pesaran (2006) is defined as,

β̂CCEP =

(
N∑
i=1

X ′
iMZ̄Xi

)−1( N∑
i=1

X ′
iMZ̄Yi

)−1

. (4)

However, the rank condition affects the asymptotic properties of β̂CCEP , as show in

Karabiyik et al. (2017), Juodis et al. (2021) and others. They distinguished different

cases, including m < k + 1, m = k + 1, and m > k + 1, and show that the CCEP is

consistent but not asymptotic normal for some case under mild conditions. It’s natural

to ask how to avoid the CCE’s rank condition under the common correlated equation

(3). In this paper, we aim to provide an alternative method, based on the common

correlated effects of equation (3), to avoid the regular rank condition and then obtain

the consistent estimation.
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2.1 Two-step Estimation

According to equation (3), Z̄ = FC + Ū . Inspired by Hsiao et al. (2022), we proposed

the following alternative method to handle the common correlated effects Z̄ = FC+ Ū .

Step 1: we find the null space of Z̄, that is { w
T×1

∈ RT : w′Z̄ = 01×(k+1)}, by
minimizing w′(Z̄Z̄ ′/T )w,under the constraint that w′w = 1. According to the first

order conditions, ŵ is the eigenvalue of the matrix Z̄Z̄ ′/T, corresponding the zero

eigenvalues. Since Ū
p→ 0T×(k+1) under Assumption 1, as N → ∞, thus, ŵ′Z̄ = 01×(k+1)

implies that ŵ′FC
p→ 01×(k+1), as N → ∞.

Remark: In the step 1, we aim to find the null space of Z̄ based on the common

correlated effects of equation (3), and the null space of Z̄ asymptotically equals the null

space of the common factors F. In this step, we do not directly estimate the common

factors by the observable Z̄, and then estimate the null space of F by MZ̄ , as the

traditional CCE approach of equation (4). Thus, it do not need the rank condition in

the estimation procedures. In addition, the function of ŵ is similar to MZ̄ , eliminating

the interactive fixed effects.

Step 2: Pre-multipling the models (1) by ŵ′ gives

ŵ′Yi = ŵ′Xiβ + ŵ′Fλi + ŵ′εit. (5)

Last, the transformed pooled CCE estimator β̂TP is defined as

β̂TP =

(
N∑
i=1

X ′
iŵŵ

′Xi

)−1( N∑
i=1

X ′
iŵŵ

′Yi

)
. (6)

Similar to the transformed estimation in Hsiao et al. (2022)that the rank of Z̄Z̄ ′/T

equals k + 1. , there exists multiple estimated ŵ that line in the null space of Z̄. For

j ∈ {1, · · · , J},the j-th estimator is

β̂TP,j =

(
N∑
i=1

X ′
iŵjŵ

′
jXi

)−1( N∑
i=1

X ′
iŵjŵ

′
jYi

)
, (7)

and the average transformed pooled CCE estimator is more efficient than β̂TP , and is

defined as

β̂ATP =
1

J

J∑
j=1

β̂TP,j.
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Let S1 denotes vector space spanned by 1
NT

∑N
i=1 X

′
iXi, S2 denote the vector space

spanned by F, S3 denote the vector space orthogonal to the space spanned by F in RT .

To show the asymptotic properties of the estimators, we give another Assumptions,

Assumption 4 For any nonzero vector b, such that b′b = O(1), b′
(

1
NT

∑N
i=1 X

′
iXi

)
b

p→
ΦX < ∞, as (N, T ) → ∞.

Assumption 5 S1 ∩ S3 = ∅.

Assumption 4 is the identification condition and Assumption 5 make sure w is an

nonzero vectors. According to equation (7) and Assumptions 1-5, we obain

√
NT (β̂TP − β) = (

1

NT

N∑
i=1

X ′
iŵŵ

′Xi)
−1(

1√
NT

N∑
i=1

X ′
iŵŵ

′εi) + op(1),

Thus, we obtain the following Theorem 1.

Theorem 1 Under Assumptions 1-5, then as (N, T ) → ∞, (i)

√
NT (β̂TP − β)

d→ N (0,ΩTP ).

where ΩTP = Φ−1
X ΨΦ−1

X , with ΦX = lim(N,T )→∞
1

NT

∑N
i=1X

′
iww

′Xi, and

Ψ = lim
(N,T )→∞

1

NT

N∑
i=1

N∑
j=1

X ′
iww

′E(εiε
′
j)ww

′X ′
j;

(ii) √
NT (β̂ATP − β)

d→ N (0,ΩATP ).

where ΩATP = 1
J

∑J
j=1ΩTP,j with ΩTP,j denotes the asymptotic covariance

matrix of β̂TP,j.

In the transformation estimation of Hsiao et al. (2020), the relative growth rate of the

samples is restrictive such that N
T
→ a < ∞ and we do not need it in the CCE’s setup.

Last, we also allow for the case of T is fixed and N → ∞.

For the case of random individual slope βi = β+ηi, under the following Assumption

6,
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Assumption 6 the random elements ηi ∼ iid(0,Ση) with ||Ση|| < ∞, and ηi is inde-

pendent of εi and vi.

Plugging βi = β + ηi into the asymptotic expression of
√
NT (β̂TP − β), under

Assumption 1-6, we directly obtain,

√
NT

(
β̂TP − β

)
=

(
1

NT

N∑
i=1

X ′
iŵŵ

′Xi

)−1(
1√
NT

N∑
i=1

X ′
iŵŵ

′Xiηi

)

+

(
1

NT

N∑
i=1

X ′
iŵŵ

′Xi

)−1(
1√
NT

N∑
i=1

X ′
iŵŵ

′εi

)
+ op(1).

Thus, we obtain the following Proposition 1:

Proposition 1 Under Assumptions 1-6, then, as (N, T ) → ∞, (i)

√
NT

(
β̂TP − β

)
d→ N(0,Ω+

TP ),

where Ω+
TP = ΩTP+Φ−1

X Ψ+Φ−1
X , with Ψ+ = lim(N,T )→∞

1
NT

∑N
i=1

∑N
j=1X

′
iŵŵ

′XiE(ηiη
′
j)Xjww

′X ′
j;

(ii) √
NT

(
β̂ATP − β

)
d→ N (0,Ω+

ATP ),

where Ω+
ATP = 1

J

∑J
j=1Ω

+
TP with Ω+

TP denotes the asymptotic covariance matrix of β̂TP,j.

3 Experiments

In this paper, we consider four data generating processes (DGP), as following.

DGP 1(Rank condition: k + 1 = m): the observed dependent variable yit, and

one-dimensional regressor are generated by

yit = xitβ + λ′
ift + εit,

xit = Λ′
ift + vit.

where the true slopes β = 1, the factor loadings λi = (λi1, λi2)
′ are set as λi1 ∼

iidχ2(1) and λi2
iid∼ N(0.2, 0.2). Λi = (Λi1,Λi2) with Λi1,Λi2 ∼ iidN(0.5, 1). For t =

{−49, ....0, ...., T}, let vft ∼ iidχ2(3)− 3 with ρf = 0.5, fi,−50 = 0. the common factors

ft = (ft1, ft2)
′ follows AR(1) process,

ft = ρfft−1 + vft.
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For the errors, εit follows stationary AR(1) process with heteroskedasticity across

each i. Let ρiε ∼ iidU [0.5, 0.9], σi ∼ iidU [0.8, 1.8], ζit ∼ iidχ2(3) − 3 for both i and

t = {−49, ....0, ...., T},
εit = ρiεεi,t−1 + σi(1− ρ2iε)

0.5ζit,

where εi,−50 = 0. vit ∼ iidN(0, 1).

DGP 2 (Rank condition: k + 1 < m): We add one another common factor ft3 ∼
iidN(0, 1) and factor loadings λi3 ∼ iidN(0, 1) and Λi3 ∼ iidN(0.5, 1) into the case of

DGP 1.

DGP 3 (Rank deficiency): this DGP is similar to that of DGP 1, exception that

Λi1,Λi2 ∼ iidN(0, 1).

DGP 4 (Heterogeneous slope): For the DGP 1 withe heterogeneous slope, the model

becomes

yit = xitβi + λ′
ift + εit,

where βi = 1 + ηi, with ηi ∼ iidN(0, 1).

We replicate each experiments 1000 replications and report the root mean squared

errors (RMSE × 100) and mean bias (Bias × 100) of β̂, for the pooled CCE estima-

tor β̂CCEP and our proposed estimators β̂TP and β̂ATP . The samples vary along the

individual dimension N = {20, 50, 100, 200} and time dimension T = {20, 50, 100, 200}.

3.1 Results

Table 1 shows that the RMSE and Bias of all the three estimators decrease as the

samples become larger when the rank condition is satisfied. Overall, the RMSE of β̂ATP

is smaller than that of β̂CCEP ,and β̂TP is less efficient. For example, when N = 200

and T = 200, the RMSE of β̂ATP equals 0.025 and that of β̂CCEP equals 0.031. We

also find that the RMSE of β̂ATP decreases faster than that of β̂CCEP as T increase.

From the viewpoint of bias, β̂CCEP has smaller bias than β̂TP and Table 2 considers

the case that rank condition is not satisfied such that k + 1 < m, and the RMSE of

β̂CCEP increase to 0.064 when N = 200 and T = 200, Table 3 considers the case of rank

deficiency with mean zero of Λi. We could also obtain the similar results as Table 1 and

Table 2 and the RMSE of β̂CCEP and β̂ATP increase a little. For the case of random

individual coefficient, Table 4 show that the RMSE of all the three estimators increase

a bitter than homogeneous case and the RMSE of β̂ATP is smaller that of β̂CCEP .
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Last, we also consider the Example 3.1 of Juodis et al. (2021) that if λi is corre-

lated with Λi, the simulated distribution of
√
N(β̂CCEP − β) deviated from the normal

distribution, show in Figure 1 of Juodis et al. (2021). We also plot the simulated

distribution of
√
N(β̂CCEP − β) in Figure 1 and show that it does not deviate from the

normal distribution.

Table 1: The RMSE and Bias of β in DGP 1

RMSE × 100 Bias× 100
Methods T\N 20 50 100 200 20 50 100 200

β̂CCEP

20 17.67 10.82 7.12 4.70 -1.25 -0.36 0.23 -0.13
50 16.94 9.57 6.04 3.59 1.13 -0.33 -0.43 0.01
100 15.27 8.97 5.61 3.18 0.01 -0.07 -0.41 0.02
200 15.22 9.01 5.07 3.05 0.03 -0.29 -0.02 0.30

β̂TP

20 47.14 30.70 23.14 16.72 -0.30 -0.65 0.06 0.001
50 50.06 31.91 24.52 16.83 1.05 -0.31 -0.20 0.34
100 50.57 33.11 23.31 17.55 -0.34 -0.47 -1.36 0.36
200 52.59 32.35 23.54 17.88 0.22 0.59 0.85 0.50

β̂ATP

20 17.60 11.64 9.15 7.41 5.08 5.54 6.14 5.66
50 14.44 8.18 5.47 3.90 2.98 1.75 1.73 2.10
100 12.17 7.09 4.48 2.87 1.09 0.99 0.72 1.06
200 11.59 6.77 3.92 2.54 0.51 0.19 0.54 0.77

Table 2: The RMSE and Bias of β in DGP 2

RMSE × 100 Bias× 100
Methods T\N 20 50 100 200 20 50 100 200

β̂CCEP

20 19.32 12.90 8.98 6.36 0.73 -0.20 -0.20 -0.18
50 19.09 12.24 9.17 6.44 0.22 0.78 0.22 -0.14
100 19.37 12.47 8.74 6.17 0.07 0.45 -0.08 -0.01
200 18.58 12.18 8.61 6.37 -0.42 -0.33 -0.09 0.18

β̂TP

20 37.36 24.47 16.98 12.71 2.55 -1.16 -0.55 0.57
50 37.86 23.65 16.82 12.77 0.49 1.16 0.43 -0.53
100 38.50 24.55 16.99 12.56 -0.65 0.15 0.85 -0.35
200 37.10 23.82 17.53 12.62 -2.01 -0.73 0.14 0.50

β̂ATP

20 18.63 12.49 9.62 8.03 6.63 5.52 5.65 5.84
50 15.67 10.02 7.49 5.45 2.18 2.93 2.13 2.04
100 15.30 9.67 6.77 4.82 1.11 1.46 0.97 1.08
200 14.39 9.17 6.46 4.83 0.12 0.29 0.43 0.64
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Table 3: The RMSE and Bias of β in DGP 3

RMSE × 100 Bias× 100
Methods T\N 20 50 100 200 20 50 100 200

β̂CCEP

20 17.33 11.17 7.91 5.45 -0.54 -0.04 0.11 0.11
50 16.87 9.80 6.98 5.07 0.10 0.04 -0.26 -0.28
100 15.67 9.13 6.85 5.22 0.09 -0.35 0.19 -0.05
200 15.38 9.28 7.05 4.69 -0.52 -0.02 0.26 -0.31

β̂TP

20 47.28 27.75 21.68 15.14 -0.81 -0.28 0.29 -0.73
50 51.07 29.25 21.44 15.43 -0.64 0.89 -0.02 -0.45
100 49.36 29.38 22.12 16.15 -3.30 -0.37 -0.22 0.29
200 49.63 31.97 21.59 16.11 -1.50 0.90 0.41 0.43

β̂ATP

20 17.37 11.98 9.42 7.78 5.65 5.97 6.07 5.89
50 13.90 8.41 5.94 4.48 2.04 2.07 1.86 1.97
100 12.36 6.96 5.34 4.06 1.24 0.85 1.11 0.98
200 11.67 6.90 5.20 3.51 0.15 0.46 0.73 0.27

Table 4: The RMSE and Bias of β in DGP 4

RMSE × 100 Bias× 100
Methods T\N 20 50 100 200 20 50 100 200

β̂CCEP

20 33.71 21.04 14.40 9.57 -1.07 -0.16 0.01 0.23
50 34.35 20.74 13.97 8.66 0.83 0.01 0.52 -0.14
100 31.84 19.51 13.47 8.52 -2.69 -0.27 0.26 0.01
200 33.23 19.29 12.94 8.62 0.85 -0.58 0.21 -0.18

β̂TP

20 61.50 38.31 29.27 20.37 0.83 -1.41 1.01 -0.63
50 60.97 39.38 29.54 21.26 -0.81 -2.04 -1.05 0.12
100 60.74 39.47 29.33 20.84 -0.69 -1.34 1.94 -0.06
200 61.48 40.75 28.14 20.64 0.57 -0.22 -0.19 -0.65

β̂ATP

20 32.86 21.03 15.41 11.37 5.05 5.77 6.10 6.03
50 30.61 19.06 13.15 8.41 2.81 2.04 2.48 1.95
100 27.81 17.37 12.43 8.11 -1.61 0.82 1.26 0.97
200 28.80 16.95 11.53 8.08 1.44 0.13 0.69 0.32
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(a)
√
N(β̂CCEP − β) (b)

√
N(β̂ATP − β)

Figure 1: Simulated finite sample distribution

4 Conclusion

In this paper, we proposed the transformed pooled CCE estimator of the panel data

model with the common factors, which avoiding the rank condition in the traditional

CCE estimators. The proposed method is also easy to implement and computationally

efficient. Asymptotic properties of the proposed estimators are developed. Numerical

results show the well performance of the estimators in finite samples.
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Appendix

A The Proofs

Proof of Theorem 1: (i) For the step 1 of the two-steps estimation:

Similar to equation (23) and (24) of Hsiao et al. (2022), the first order condition of

minimizing w′(Z̄Z̄ ′/T )w,under the constraint that w′w = 1, is that

(
1

T
Z̄Z̄ ′)w = δ∗w

w′(
1

T
Z̄Z̄ ′)w = δ∗

where δ∗ is the Lagrange multiplier. Thus, ŵ is the eigenvalue of the matrix 1
T
Z̄Z̄ ′,

corresponding the zero eigenvalues, such that ŵ′( 1
T
Z̄Z̄ ′)ŵ = 0 and then ŵ′Z̄ = 01×(k+1).

Step 2. According to Assumption 1 that Ū
p→ 0T×(k+1) as N → ∞,and ||C|| < ∞,

w′Z̄ = 01×(k+1) implies that w′F
p→ 01×r, as N → ∞. Thus, we obtain

√
NT (β̂TP − β) =

(
1

NT

N∑
i=1

X ′
iŵŵ

′Xi

)−1(
1√
NT

N∑
i=1

X ′
iŵŵ

′εi

)
+ op(1).

Under the Assumption 1-5 and the same arguments as Hsiao et al. (2022), we obtain

the following Lemmas 1 and 2:

Lemma 1 Let ξ = ŵ − w, and as T → ∞, ξ′ξ ≤ Op

(
1

NT 1−α

)
, where 0 ≤ α < 1.

Lemma 2 (i) 1
N

∑N
i=1 X

′
iŵŵ

′Xi
p→ ΦX , as N → ∞, with ΦX is positive-definite matrix;

(ii) 1√
N

∑N
i=1X

′
iŵŵ

′εi
d→ N (0,Ψ),with Ψ = lim(N,T )→∞

1
T

∑N
i=1

∑N
j=1X

′
iww

′E(εiε
′
j)ww

′Xi.

Thus, according to Lemma 1 and 2:

1

NT

N∑
i=1

X ′
iŵŵ

′Xi
p→ 1√

NT

N∑
i=1

X ′
iŵŵ

′Xi

and
1√
NT

N∑
i=1

X ′
iŵŵ

′εi
p→ 1√

NT

N∑
i=1

X ′
iww

′εi

and 1√
NT

∑N
i=1X

′
iww

′εi
d→ N (0,Ψ). Thus, we conclude it.

(ii) The proof of the asymptotic normality is merely same as the proof of Proposition

6 in Hsiao et al. (2022) and then is omitted.
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