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Abstract

The common correlated effects (CCE) is one of the most popular estimating
approaches for the panel data model with the interactive fixed effects. However,
one of the restrictions of CCE is that the rank condition affects the asymptotic
properties of the pooled CCE estimator. In this paper, we proposed the two-steps
estimation, combining the orthogonal projection and CCE, to avoiding the rank
condition. The asymptotic properties of the proposed estimators are proved and
show in the experiments.
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1 Introduction

Panel data models with the interactive fixed effects have become popular in the econo-
metric model (Sarafidis and Wansbeek, 2012; Hsiao, 2018) and economic applications,
such as the international trade (Serlenga and Shin, 2007), finance (Gagliardini et al.,
2020), environments (Khan et al., 2020). To estimate the slopes, Pesaran (2006) pro-
posed the CCE estimators. This estimation is easy to implement, which has been
extended into the endogenous model (Harding and Lamarche, 2011), dynamic model
(Chudik and Pesaran, 2015) and others. The CCE used the cross-sectional average of

observed data to estimating the unobserved common factors, leading to the discusses
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of the rank condition in the pooled CCE estimator (Karabiyik et al., 2017; Karabiyik
et al., 2019; Juodis et al., 2021). Karabiyik et al. (2017) show that, while the number
of factors is strictly less than the number of observed data, the pooled CCE estimator
is biased, also show in Westerlund and Urbain (2015).

In this paper, we aim to apply the orthogonal projection of the CCE to avoid the
rank condition, inspired by the transformed estimation of Hsiao et al. (2022). Specifi-
cally, we find the null space of the observable data and then use the pooled regression
to estimate the interested parameters. Under the CCE, the two-steps estimation by the
orthogonal projection do not need iteration, as the transformation estimation of Hsiao
et al. (2022). The rest of this paper is organized as follows. Section 2 introduce the
model and the proposed estimation are presented. Section 3 conducts the Monte Carlo

experiments and Section 4 conclude this paper.

2 Model

For each individual i € {1,--- | N}, Y; = (y;1,- -+, yir)" denotes individual i’s dependent
variable with the time span t = {1,--- T}, and X; = (x;1,- -+ ,2;r)" is the individual
i’s covariates with x; = (21, ,Zux). The panel data model with the interactive

fixed effect or factor structure is

Yi=XiB+ F\i +¢, (1)
where (3 is k x 1 vector of slopes, F' = (f1,-- -, fr) is an T'x m dimensional unobservable
common factors with factor loadings \;, and ¢; = (g;1,- -+, ;)" is the individual i’s

idiosyncratic error.
In the setup of Pesaran (2006)’s CCE, the regressors are also driven by the common
factors,
X;=FAN+V,, (2)

where A; is m x k dimensional factor loadings of common factors F, V; = (vy, - -+, vir)’
is the idiosyncratic error of the equation (2).
Let Z; = (Y;, X;) denotes all the observable variables, and combining the equations
(1) and (2) gives
Z; = FC; 4+ U, (3)

where C; = (AL + N\, A}) and U; = (Vi + ¢;,V;). Equation (3) is always called the

common correlated effects, showing that the observable data are both correlated by the



common factor F. The following Assumption are general in the CCE’s setup (Juodis et
al., 2021).

Assumption 1 (i) The disturbances ey = (€4,v},)" is a stationary process that is in-
dependent across i with I'.;(h) = E(eite;t_h) absolutely summable, E(ey) = g1y,
Ellei|| < oo. (i) For each series i, vy is independent of ¢y for all t and t'; (1ii)
vy are linear stationary processes with zero mean and absolute summable autocovari-
ances, Vi = Y o0 ZaUie—1, where (G, vl ) are (p + 1) x 1 wectors of IID random
variables with variance-covariance matriz 1,11 and has a finite fourth-order moments,
and Var(vy) =Y 20 ZaZl = X, and 0 < ||Z, ;]| < oo.

Assumption 2 (i) Factor loadings C; is independent across i, with E||Cy||* < oo, and
E(Cy) = C; (i) C; and u;j are independent for all i and j; (wi) E||N||* < oo, and

plimy_, oo Zf\il ANi\; = X\, with positive definite matriz Xy.

Assumption 3 (i) f; is a stationary process with E(f;) = Oy, I'p(h) = limyyo0 7 fif)_p,
and Xy = T';(0) is a positive definite matriz, and I'f(h) absolutely summable; (ii) e;

and f are mutually independent for all i,t and s.

According to equation (3), the common factors are estimated by the cross-sectional
average of observable variables, F=7= % Zf\il Z; =FC +U, as N — co. Thus, the
pooled CCE estimator (CCEP) of Pesaran (2006) is defined as,

N -1 N -1
Becep = (Z X;MZXJ (Z X;MZE-) : (4)

=1 =1

However, the rank condition affects the asymptotic properties of BCCE p, as show in
Karabiyik et al. (2017), Juodis et al. (2021) and others. They distinguished different
cases, including m < k+ 1, m = k+ 1, and m > k + 1, and show that the CCEP is
consistent but not asymptotic normal for some case under mild conditions. It’s natural
to ask how to avoid the CCE’s rank condition under the common correlated equation
(3). In this paper, we aim to provide an alternative method, based on the common
correlated effects of equation (3), to avoid the regular rank condition and then obtain

the consistent estimation.



2.1 Two-step Estimation

According to equation (3), Z = FC + U. Inspired by Hsiao et al. (2022), we proposed
the following alternative method to handle the common correlated effects Z = FC +U.

Step 1: we find the null space of Z, that is {TUXJ1 e R :wZ = O1x(k+1)}, by
minimizing w'(ZZ'/T)w,under the constraint that w'w = 1. According to the first
order conditions, w is the eigenvalue of the matrix ZZ'/T, corresponding the zero
eigenvalues. Since U LN O7x (k+1) under Assumption 1, as N — oo, thus, w7z = O1x (k+1)
implies that @' FC 2 O1x(kt1); as N — oo.

Remark: In the step 1, we aim to find the null space of Z based on the common
correlated effects of equation (3), and the null space of Z asymptotically equals the null
space of the common factors F. In this step, we do not directly estimate the common
factors by the observable Z, and then estimate the null space of F by My, as the
traditional CCE approach of equation (4). Thus, it do not need the rank condition in
the estimation procedures. In addition, the function of w is similar to M, eliminating
the interactive fixed effects.

Step 2: Pre-multipling the models (1) by w' gives
DY, = WX+ D FN+ e (5)

Last, the transformed pooled CCE estimator BTP is defined as

N -1 /N
Brp = (Z X;uvw’x,) (Z X;ww'n> . (6)
i=1 i=1

Similar to the transformed estimation in Hsiao et al. (2022)that the rank of ZZ'/T
equals k + 1. , there exists multiple estimated @ that line in the null space of Z. For
j€{l,---,J}the j-th estimator is

N -1 /N
Brp; = (Z X;ijgxi> <Z X;wjuv;yi> : (7)
=1 =1

and the average transformed pooled CCE estimator is more efficient than B\Tp, and is
defined as

<=

BATP =

J
> Brey.
j=1



Let S7 denotes vector space spanned by ﬁ Zfil X/ X;, Sy denote the vector space
spanned by F, S3 denote the vector space orthogonal to the space spanned by F in R7.

To show the asymptotic properties of the estimators, we give another Assumptions,

Assumption 4 For any nonzero vector b, such that b'b = O(1), V/ (NLT SV X{Xi> b5
by <00, as (N, T) — 0.

Assumption 5 S; N S; = (.

Assumption 4 is the identification condition and Assumption 5 make sure w is an

nonzero vectors. According to equation (7) and Assumptions 1-5, we obain

VNT(Brp — B) = (%7 ZX’ D' X;)

=1

N
Z lww'e;) + 0p(1),

7\

Thus, we obtain the following Theorem 1.

Theorem 1 Under Assumptions 1-5, then as (N, T) — oo, (i)
VNT (Brp — ) % N(0,Qrp).

where Qpp = VO, with &y = lim(n,7)—00 ﬁ ZZ]\LI Xjww'X;, and

N N
1
U= lim N—ZZ iww' B (g )ww' X;

(N, T)—o0

(ii)
VNT(Barp — B) 5 N(0, Qarp).
where Qarp = %ijl Qrp; with Qrp; denotes the asymptotic covariance

matrix of BTPJ.

In the transformation estimation of Hsiao et al. (2020), the relative growth rate of the
samples is restrictive such that % — a < oo and we do not need it in the CCE’s setup.
Last, we also allow for the case of T is fixed and N — oo.

For the case of random individual slope §; = 5+ m;, under the following Assumption
6,



Assumption 6 the random elements n; ~ id(0,%,) with ||X,|| < oo, and n; is inde-

pendent of €; and v;.

Plugging 8; = B + n; into the asymptotic expression of v N T(BTP — f3), under
Assumption 1-6, we directly obtain,

N -1
VNT (ETP . 5) - (% 3 X{zf;u?’Xi> <
=1

1 & -
I oA A

Thus, we obtain the following Proposition 1:

E

7\

ZX/ ’sz)
Z w'ei>+op(1).

Proposition 1 Under Assumptions 1-6, then, as (N,T) — oo, (i)
VNT (BTP - 5) 4 N(0, Q).

where Qf.p = Qrp+@3 UHO L with UF = m(y 1) o0 57 Doty Do gy X' X; E(nim}) Xjww' X
(ii)
VNT (Bare = 8) 5 N (0, i),

where Qi p = 5 Z] QU p with Q5 denotes the asymptotic covariance matriz OfB\TPJ‘.

3 Experiments

In this paper, we consider four data generating processes (DGP), as following.
DGP 1(Rank condition: k& + 1 = m): the observed dependent variable y;;, and

one-dimensional regressor are generated by
Yit = TS + N fi + €,
Tyt = A;ft + Vit

where the true slopes f = 1, the factor loadings A; = (M1, \i2)" are set as Ay ~
iidx2(1) and Ao < N(0.2,0.2). A; = (A, Ain) with Ay, Ay ~ iidN(0.5,1). For ¢ =
{—49,...0,...., T}, let vy ~ iidx*(3) — 3 with p; = 0.5, f; _50 = 0. the common factors

fi = (fu1, f12) follows AR(1) process,
ft = prficr +vp.

6



For the errors, €; follows stationary AR(1) process with heteroskedasticity across
each 1. Let p.. ~ idU[0.5,0.9],0; ~ #dU[0.8,1.8],(; ~ #idx*(3) — 3 for both i and
t ={-49,...0,....,T},

it = Pic€ir—1 + oi(1 — P?E)O'E)Qt,
where &, _50 = 0. vy ~ 1idN(0,1).

DGP 2 (Rank condition: k + 1 < m): We add one another common factor fiz3 ~
itdN (0, 1) and factor loadings ;3 ~ #dN(0,1) and A;3 ~ iidN(0.5,1) into the case of
DGP 1.

DGP 3 (Rank deficiency): this DGP is similar to that of DGP 1, exception that
A1, Nig ~ 4idN(0, 1).

DGP 4 (Heterogeneous slope): For the DGP 1 withe heterogeneous slope, the model

becomes
Yit = Tt + A;ft + €4,

where 8; = 1+ n;, with n; ~ idN(0,1).

We replicate each experiments 1000 replications and report the root mean squared
errors (RMSE x 100) and mean bias (Bias x 100) of 3, for the pooled CCE estima-
tor BCCEP and our proposed estimators BTP and B arp. The samples vary along the
individual dimension N = {20, 50, 100,200} and time dimension 7" = {20, 50, 100, 200}.

3.1 Results

Table 1 shows that the RMSFE and Bias of all the three estimators decrease as the
samples become larger when the rank condition is satisfied. Overall, the RM SFE of Barp
is smaller than that of BCCEp,and BTP is less efficient. For example, when N = 200
and T = 200, the RMSFE of BATP equals 0.025 and that of BCCEP equals 0.031. We
also find that the RMSE of B a7p decreases faster than that of BCCEP as T increase.
From the viewpoint of bias, BCCEP has smaller bias than BTP and Table 2 considers
the case that rank condition is not satisfied such that kK + 1 < m, and the RMSE of
BCCE p increase to 0.064 when N = 200 and T = 200, Table 3 considers the case of rank
deficiency with mean zero of A;. We could also obtain the similar results as Table 1 and
Table 2 and the RMSE of BCCEP and B arp increase a little. For the case of random
individual coefficient, Table 4 show that the RM SFE of all the three estimators increase
a bitter than homogeneous case and the RMSE of B arp is smaller that of BCCEP.



Last, we also consider the Example 3.1 of Juodis et al. (2021) that if \; is corre-
lated with A;, the simulated distribution of VN (BC(;E p — () deviated from the normal
distribution, show in Figure 1 of Juodis et al. (2021). We also plot the simulated
distribution of v N (BCCE p — () in Figure 1 and show that it does not deviate from the

normal distribution.

Table 1: The RMSFE and Bias of §in DGP 1

RMSE x 100 Bias x 100
Methods | T\N 20 50 100 200 20 50 100 200
20 | 17.67 10.82 7.12 470 | -1.25 -0.36 023 -0.13
. 50 | 16.94 957  6.04 359 | 1.13 -0.33 -0.43 0.01
Bocep 100 | 1527 897  5.61 3.18 | 0.01 -0.07 -0.41 0.02
200 | 1522 9.01 507 3.05 | 003 -0.29 -0.02 0.30
20 | 47.14 30.70 23.14 16.72| -0.30 -0.65 0.06 0.001
. 50 | 50.06 31.91 2452 16.83| 1.05 -0.31 -0.20 0.34
Brr 100 | 50.57 33.11 2331 17.55| -0.34 -0.47 -1.36 0.36
200 | 52.59 3235 2354 17.88| 022 0.59 0.85  0.50
20 | 17.60 11.64 9.15 7.41 | 508 554 6.14 5.66
. 50 | 1444 818 547 390 | 298 175 1.73 210
Parrp 100 | 12.17 7.09 448 287 | 1.09 099 072 1.06
200 | 1159 6.77 392 254 | 051 019 054 077

Table 2: The RMSFE and Bias of fin DGP 2

RMSE x 100 Bias x 100
Methods | T\N 20 50 100 200 20 50 100 200
20 | 19.32 1290 898 636 | 0.73 -0.20 -0.20 -0.18
. 50 | 19.09 1224 9.17 644 | 022 078 0.22 -0.14
Becer | 100 | 1937 1247 874 617 | 007 045 -0.08 -0.01
200 | 1858 12.18 861  6.37 | -0.42 -0.33 -0.09 0.18
20 | 37.36 2447 1698 12.71| 255 -1.16 -0.55 0.57
. 50 | 37.86 23.65 16.82 12.77| 0.49 1.16 043 -0.53
Bre 100 | 3850 24.55 16.99 1256 | -0.65 0.15 0.85 -0.35
200 | 37.10 23.82 17.53 1262 | -2.01 -0.73 0.14  0.50
20 | 1863 1249 9.62 803 | 6.63 552 565 5.84
. 50 | 15.67 10.02 7.49 545 | 2.18 293 213  2.04
Barp 100 | 15.30 9.67  6.77  4.82 1.11 146 097 1.08
200 | 14.39 917 646 483 | 012 029 043 0.64




Table 3: The RMSE and Bias of 5 in DGP 3

RMSE x 100 Bias x 100
Methods | T\N 20 50 100 200 20 50 100 200
20 | 17.33 11.17 791 545 | -0.54 -0.04 0.11 0.11
. 50 | 16.87 9.80  6.98  5.07 | 0.10 0.04 -0.26 -0.28
Pocep 100 | 1567 9.13  6.85 522 | 0.09 -0.35 0.19 -0.05
200 | 1538 9.28  7.05  4.69 | -0.52 -0.02 0.26 -0.31
20 | 4728 2775 21.68 15.14| -0.81 -0.28 029 -0.73
. 50 | 51.07 29.25 2144 1543 | -0.64 0.89 -0.02 -0.45
Pre 100 | 49.36  29.38 22.12 16.15| -3.30 -0.37 -0.22  0.29
200 | 49.63 31.97 21.59 16.11| -1.50 0.90 0.41 043
20 | 1737 11.98 942 778 | 565 597 6.07 5.89
. 50 | 13.90 841 594 448 | 2.04 207 186 1.97
Barp 100 | 12.36  6.96 534  4.06 | 124 085 1.11  0.98
200 | 11.67 6.90 520 351 | 0.15 046 0.73 0.27

Table 4: The RMSFE and Bias of § in DGP 4

RMSE x 100 Bias x 100
Methods | T\N 20 50 100 200 20 50 100 200
20 | 33.71 21.04 1440 957 | -1.07 -0.16 0.01 0.23
R 50 | 34.35 20.74 1397 866 | 0.83 0.01 052 -0.14
Beeer | 100 | 31.84 1051 1347 852 | -2.60 -0.27 026 0.0l
200 | 3323 1929 1294 862 | 085 -0.58 0.21 -0.18
20 | 61.50 3831 29.27 2037 083 -141 1.01 -0.63
. 50 | 60.97 39.38 2954 21.26| -0.81 -2.04 -1.05 0.12
Brr 100 | 60.74 39.47 29.33 20.84| -0.60 -1.34 194 -0.06
200 | 61.48 40.75 28.14 2064 | 057 -0.22 -0.19 -0.65
20 | 32.86 21.03 1541 11.37| 5.05 577 6.10 6.03
. 50 | 30.61 19.06 13.15 841 | 2.81 2.04 248 195
Barrp 100 | 27.81 17.37 1243 811 | -1.61 0.82 126 0097
200 | 28.80 16.95 11.53 808 | 1.44 0.13 0.69 0.32
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(a) VN(Bccrp — B) (b) VN(Barp — B)

Figure 1: Simulated finite sample distribution

4 Conclusion

In this paper, we proposed the transformed pooled CCE estimator of the panel data
model with the common factors, which avoiding the rank condition in the traditional
CCE estimators. The proposed method is also easy to implement and computationally
efficient. Asymptotic properties of the proposed estimators are developed. Numerical

results show the well performance of the estimators in finite samples.
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Appendix

A The Proofs

Proof of Theorem 1: (i) For the step 1 of the two-steps estimation:
Similar to equation (23) and (24) of Hsiao et al. (2022), the first order condition of

minimizing w'(ZZ'/T)w,under the constraint that w'w = 1, is that

1

(TZZ/)U) ="w
1 --
w’(?ZZ’)w ="

where 6* is the Lagrange multiplier. Thus, @ is the eigenvalue of the matrix %Z 7'
corresponding the zero eigenvalues, such that w’ (%Z Z"b = 0 and then @'Z = 01 x (k1)

Step 2. According to Assumption 1 that U 2 O7x(kt1) as N — oo,and ||C|] < oo,
w'Z = 01 (k+1) implies that w'F 2 01x,, as N — co. Thus, we obtain

N -1 N
R | 1
VNT(Brp — B) = | o= S X' X: | | o= 3 Xlavii'e, 1).
(Brr = B) (NT £t ) (\/NT et 61) ot

Under the Assumption 1-5 and the same arguments as Hsiao et al. (2022), we obtain
the following Lemmas 1 and 2:
Lemma 1 Let £ =w —w, and as T — oo, §’§§OP(;), where 0 < o < 1.

NT1l—-«a

Lemma 2 (i) & SN X' X; B @y, as N — oo, with @ is positive-definite matriz;
(i) e S, Xin'e; 5 N(0, W) with W = i (x 7y so0 = 3oy S0y Xlww! B(eie Jww' X;.

Thus, according to Lemma 1 and 2:

and

and ﬁ SV Xlww's; N N (0, V). Thus, we conclude it.
(ii) The proof of the asymptotic normality is merely same as the proof of Proposition
6 in Hsiao et al. (2022) and then is omitted.
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